2025-01-12 00:52:51 +08:00

99 lines
3.0 KiB
R

options(na.action=na.exclude) # preserve missings
options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
library(survival)
#
# The residual methods treat a sparse frailty as a fixed offset with
# no variance
#
aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...)
kfit1 <- coxph(Surv(time, status) ~ age + sex +
frailty(id, dist='gauss'), kidney)
tempf <- predict(kfit1, type='terms')[,3]
temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))]
#all.equal(unclass(tempf), unclass(temp))
all.equal(as.vector(tempf), as.vector(temp))
# Now fit a model with explicit offset
kfitx <- coxph(Surv(time, status) ~ age + sex + offset(tempf),kidney,
eps=1e-7)
# These are not always precisely the same, due to different iteration paths
aeq(kfitx$coef, kfit1$coef)
# This will make them identical
kfitx <- coxph(Surv(time, status) ~ age + sex + offset(temp),kidney,
iter=0, init=kfit1$coef)
aeq(resid(kfit1), resid(kfitx))
aeq(resid(kfit1, type='score'), resid(kfitx, type='score'))
aeq(resid(kfit1, type='schoe'), resid(kfitx, type='schoe'))
# These are not the same, due to a different variance matrix
# The frailty model's variance is about 2x the naive "assume an offset" var
# Expect a value of about 0.5
aeq(resid(kfit1, type='dfbeta'), resid(kfitx, type='dfbeta'))
# Force equality
zed <- kfitx
zed$var <- kfit1$var
aeq(resid(kfit1, type='dfbeta'), resid(zed, type='dfbeta'))
# The score residuals are equal, however.
temp1 <- resid(kfit1, type='score')
temp2 <- resid(kfitx, type='score')
aeq(temp1, temp2)
#
# Now for some tests of predicted values
#
aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected'))
aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp'))
temp1 <- predict(kfit1, type='terms', se.fit=T)
temp2 <- predict(kfitx, type='terms', se.fit=T)
aeq(temp1$fit[,1:2], temp2$fit)
# the next is not equal, all.equal returns a character string in that case
is.character(aeq(temp1$se.fit[,1:2], temp2$se.fit))
mean(temp1$se.fit[,1:2]/ temp2$se.fit)
aeq(as.vector(temp1$se.fit[,3])^2,
as.vector(kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))]))
print(temp1)
kfit1
kfitx
rm(temp1, temp2, kfitx, zed, tempf)
#
# The special case of a single sparse frailty
#
kfit1 <- coxph(Surv(time, status) ~ frailty(id, dist='gauss'), kidney)
tempf <- predict(kfit1, type='terms')
temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))]
all.equal(as.vector(tempf), as.vector(temp))
# Now fit a model with explicit offset
kfitx <- coxph(Surv(time, status) ~ offset(tempf),kidney, eps=1e-7)
aeq(resid(kfit1), resid(kfitx))
aeq(resid(kfit1, type='deviance'), resid(kfitx, type='deviance'))
#
# Some tests of predicted values
#
aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected'))
aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp'))
temp1 <- predict(kfit1, type='terms', se.fit=T)
aeq(temp1$fit, kfitx$linear)
aeq(temp1$se.fit^2,
kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))])
temp1
kfit1