177 lines
6.8 KiB
R
177 lines
6.8 KiB
R
library(survival)
|
|
aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
|
|
|
|
test1 <- data.frame(time= c(9, 3,1,1,6,6,8),
|
|
status=c(1,NA,1,0,1,1,0),
|
|
x= c(0, 2,1,1,1,0,0))
|
|
|
|
# Verify that cox.zph computes a score test
|
|
# First for the Breslow estimate
|
|
r <- (3 + sqrt(33))/2 # actual MLE for log(beta)
|
|
U <- c(1/(r+1), 3/(r+3), -r/(r+3), 0) # score statistic
|
|
imat <- c(r/(r+1)^2, 3*r/(r+3)^2, 3*r/(r+3)^2, 0) # information matrix
|
|
g = c(1, 6, 6, 9) # death times
|
|
|
|
u2 <- c(sum(U), sum(g*U)) # first derivative
|
|
i2 <- matrix(c(sum(imat), sum(g*imat), sum(g*imat), sum(g^2*imat)),
|
|
2,2) # second derivative
|
|
sctest <- solve(i2, u2) %*% u2
|
|
|
|
# Verify that centering makes no difference for the test (though i2 changes)
|
|
g2 <- g - mean(g)
|
|
u2b <- c(sum(U), sum(g2*U))
|
|
i2b <- matrix(c(sum(imat), sum(g2*imat), sum(g2*imat), sum(g2^2*imat)),
|
|
2,2)
|
|
sctest2 <- solve(i2b, u2b) %*% u2b
|
|
all.equal(sctest, sctest2)
|
|
|
|
# Now check the program
|
|
fit1 <- coxph(Surv(time, status) ~ x, test1, ties='breslow')
|
|
aeq(fit1$coef, log(r))
|
|
zp1 <- cox.zph(fit1, transform='identity', global=FALSE)
|
|
aeq(zp1$table[,1], sctest)
|
|
aeq(zp1$y, resid(fit1, type="scaledsch"))
|
|
|
|
dummy <- rep(0, nrow(test1))
|
|
fit1b <- coxph(Surv(dummy, time, status) ~ x, test1, ties='breslow')
|
|
aeq(fit1b$coef, log(r))
|
|
zp1b <- cox.zph(fit1b, transform='identity', global=FALSE)
|
|
aeq(zp1b$table[,1], sctest)
|
|
# the pair of tied times gets reversed in the zph result
|
|
# but since the 'y' values are only used to plot it doesn't matter
|
|
aeq(zp1b$y[c(1,3,2,4)], resid(fit1b, type="scaledsch"))
|
|
|
|
# log time check
|
|
g3 <- log(g) - mean(log(g))
|
|
u3 <- c(sum(U), sum(g3*U)) # first derivative
|
|
i3 <- matrix(c(sum(imat), sum(g3*imat), sum(g3*imat), sum(g3^2*imat)),
|
|
2,2) # second derivative
|
|
sctest3 <- solve(i3, u3) %*% u3
|
|
zp3 <- cox.zph(fit1, transform='log', global=FALSE)
|
|
aeq(zp3$table[,1], sctest3)
|
|
|
|
# Efron approximation
|
|
phi <- acos((45/23)*sqrt(3/23))
|
|
r <- 2*sqrt(23/3)* cos(phi/3) # actual MLE for log(beta)
|
|
U <- c(1/(r+1), 3/(r+3), -r/(r+5), 0) # score statistic
|
|
imat <- c(r/(r+1)^2, 3*r/(r+3)^2, 5*r/(r+5)^2, 0) # information matrix
|
|
|
|
u4 <- c(sum(U), sum(g3*U)) # first derivative
|
|
i4 <- matrix(c(sum(imat), sum(g3*imat), sum(g3*imat), sum(g3^2*imat)),
|
|
2,2) # second derivative
|
|
sctest4 <- solve(i4, u4) %*% u4
|
|
|
|
fit4 <- coxph(Surv(time, status) ~ x, test1, ties='efron')
|
|
aeq(fit4$coef, log(r))
|
|
zp4 <- cox.zph(fit4, transform='log', global=FALSE)
|
|
aeq(zp4$table[,1], sctest4)
|
|
aeq(zp4$y, resid(fit4, type="scaledsch"))
|
|
|
|
fit5 <- coxph(Surv(dummy, time, status) ~ x, test1, ties="efron")
|
|
aeq(fit5$coef, log(r))
|
|
zp5 <- cox.zph(fit5, transform="log", global=FALSE)
|
|
aeq(zp5$table[,1], sctest4)
|
|
|
|
# Artificial stratification
|
|
test2 <- rbind(test1, test1)
|
|
test2$group <- rep(letters[1:2], each=nrow(test1))
|
|
# U, imat, and sctest will all double
|
|
dummy <- c(dummy, dummy)
|
|
fit6 <- coxph(Surv(dummy, time, status) ~ x + strata(group), test2)
|
|
aeq(fit6$coef, log(r))
|
|
zp6 <- cox.zph(fit6, transform="log", globa=FALSE)
|
|
aeq(zp6$table[,1], 2*sctest4)
|
|
|
|
# A multi-state check, 2 covariates
|
|
# Verify that the multi-state result = the single state Cox models
|
|
etime <- with(mgus2, ifelse(pstat==0, futime, ptime))
|
|
event <- with(mgus2, ifelse(pstat==0, 2*death, 1))
|
|
event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))
|
|
table(event)
|
|
|
|
ct1 <- coxph(Surv(etime, event) ~ sex + age, mgus2, id=id)
|
|
ct2 <- coxph(Surv(etime, event=='pcm') ~ sex + age, mgus2)
|
|
ct3 <- coxph(Surv(etime, event=='death') ~ sex + age, mgus2)
|
|
|
|
zp1 <- cox.zph(ct1, transform='identity')
|
|
zp2 <- cox.zph(ct2, transform='identity')
|
|
zp3 <- cox.zph(ct3, transform='identity')
|
|
aeq(zp1$table[1:2,], zp2$table[1:2,])
|
|
aeq(zp1$table[3:4,], zp3$table[1:2,])
|
|
|
|
# Now add a starting time of zero
|
|
dummy <- rep(0, nrow(mgus2))
|
|
ct4 <- coxph(Surv(dummy, etime, event) ~ sex + age, mgus2, id=id)
|
|
ct5 <- coxph(Surv(dummy, etime, event=='pcm') ~ sex + age, mgus2)
|
|
ct6 <- coxph(Surv(dummy, etime, event=='death') ~ sex + age, mgus2)
|
|
zp4 <- cox.zph(ct4, transform='identity')
|
|
zp5 <- cox.zph(ct5, transform='identity')
|
|
zp6 <- cox.zph(ct6, transform='identity')
|
|
aeq(zp4$table[1:2,], zp5$table[1:2,])
|
|
aeq(zp4$table[3:4,], zp6$table[1:2,])
|
|
|
|
|
|
# Direct check of a multivariate model with start, stop data
|
|
p1 <- pbcseq[!duplicated(pbcseq$id), 1:6]
|
|
pdata <- tmerge(p1[, c("id", "trt", "age", "sex")], p1, id=id,
|
|
death = event(futime, status==2))
|
|
pdata <- tmerge(pdata, pbcseq, id=id, bili=tdc(day, bili),
|
|
edema = tdc(day, edema), albumin=tdc(day, albumin),
|
|
protime = tdc(day, protime))
|
|
pfit <- coxph(Surv(tstart, tstop, death) ~ log(bili) + albumin + edema +
|
|
age + log(protime), data = pdata, ties='efron')
|
|
zp7 <- cox.zph(pfit, transform='log', global=FALSE)
|
|
|
|
direct <- function(fit) {
|
|
nvar <- length(fit$coef)
|
|
dt <- coxph.detail(fit)
|
|
gtime <- log(dt$time) - mean(log(dt$time))
|
|
# key idea: at any event time I have a first deriviative vector
|
|
# c(dt$score[i,], gtime[i]* dt$score[i,])
|
|
# and second derivative matrix
|
|
# dt$imat[,,i] gtime[i] * dt$imat[,,i]
|
|
# gtime[i]*dt$imat[,,i] gtime[i]^2 * dt$imat[,,i]
|
|
# for the expanded model, where imat[,,i] is symmetric,
|
|
# and colSums(dt$score) =0 (since the model converged)
|
|
#
|
|
# Create score tests for adding one time-dependent variable
|
|
# gtime * x[,j] at a time: first derivative of this test is
|
|
# c(dt$score[i,], gtime[i]* dt$score[i,j])
|
|
# and etc.
|
|
unew <- colSums(gtime * dt$score)
|
|
temp1 <- apply(dt$imat, 1:2, sum)
|
|
temp2 <- apply(dt$imat, 1:2, function(x) sum(x*gtime))
|
|
temp3 <- apply(dt$imat, 1:2, function(x) sum(x * gtime^2))
|
|
|
|
score <- double(nvar)
|
|
smat <- matrix(0., nvar+1, nvar+1) # second deriv matrix for the test
|
|
smat[1:nvar, 1:nvar] <- temp1
|
|
for (i in 1:nvar) {
|
|
smat[nvar+1,] <- c(temp2[i,], temp3[i,i])
|
|
smat[,nvar+1] <- c(temp2[,i], temp3[i,i])
|
|
utemp <- c(rep(0,nvar), unew[i])
|
|
score[i] <- solve(smat, utemp) %*% utemp
|
|
}
|
|
list(sctest = score, u= c(colSums(dt$score), unew),
|
|
imat=cbind(rbind(temp1, temp2), rbind(temp2, temp3)))
|
|
}
|
|
|
|
aeq(zp7$table[,1], direct(pfit)$sctest)
|
|
|
|
# Last, make sure that NA coefficients are ignored
|
|
d1 <- survSplit(Surv(time, status) ~ ., veteran, cut=150, episode="epoch")
|
|
fit <- coxph(Surv(tstart, time, status) ~ celltype:strata(epoch) + age, d1)
|
|
zz <- cox.zph(fit)
|
|
|
|
fit2 <- coxph(Surv(tstart, time, status) ~ celltype:strata(epoch) + age, d1,
|
|
x=TRUE)
|
|
zz2 <- cox.zph(fit2)
|
|
|
|
x2 <- fit2$x[, !is.na(fit$coefficients)][,-1]
|
|
fit3 <- coxph(Surv(tstart, time, status) ~ age + x2, d1)
|
|
all.equal(fit3$loglik, fit2$loglik)
|
|
zz3 <- cox.zph(fit3)
|
|
|
|
all.equal(unclass(zz)[1:7], unclass(zz2)[1:7]) #ignore the call component
|
|
all.equal(as.vector(zz$table), as.vector(zz3$table)) # variable names change
|