2025-01-12 04:36:52 +08:00

264 lines
7.4 KiB
Plaintext

R Under development (unstable) (2022-02-28 r81832) -- "Unsuffered Consequences"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## run reproduction scripts from the installed "mlbook" chapters
> testdir <- system.file("mlbook", package = "nlme", mustWork = TRUE)
> scripts <- dir(testdir, pattern = "^ch[0-9]*\\.R$")
> for(f in scripts) {
+ writeLines(c("", strrep("=", nchar(f)), basename(f), strrep("=", nchar(f))))
+ set.seed(1)
+ options(warn = 1, digits = 5)
+ source(file.path(testdir, f), echo = TRUE,
+ max.deparse.length = Inf, keep.source = TRUE)
+ }
======
ch04.R
======
> library(nlme)
> # data(bdf)
> ## Fit the null model
> ## Compare with Table 4.1, p. 47
> fm1 <- lme(langPOST ~ 1, data = bdf, random = ~ 1 | schoolNR)
> VarCorr(fm1)
schoolNR = pdLogChol(1)
Variance StdDev
(Intercept) 19.633 4.4309
Residual 64.564 8.0352
> -2*c(logLik(fm1)) # deviance
[1] 16253
> ## Fit model with fixed IQ term and random intercept
> ## Compare with Table 4.2, p. 49
> ## From the results in Tables 4.2 and 4.4, it appears that
> ## maximum likelihood fits are used, not REML fits.
> fm2 <- update(fm1, langPOST ~ IQ.ver.cen)
> summary(fm2)
Linear mixed-effects model fit by REML
Data: bdf
AIC BIC logLik
15264 15287 -7627.9
Random effects:
Formula: ~1 | schoolNR
(Intercept) Residual
StdDev: 3.0987 6.4996
Fixed effects: langPOST ~ IQ.ver.cen
Value Std.Error DF t-value p-value
(Intercept) 40.608 0.308186 2155 131.766 0
IQ.ver.cen 2.488 0.070081 2155 35.496 0
Correlation:
(Intr)
IQ.ver.cen 0.018
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.093938 -0.637456 0.057947 0.706070 3.144829
Number of Observations: 2287
Number of Groups: 131
> VarCorr(fm2)
schoolNR = pdLogChol(1)
Variance StdDev
(Intercept) 9.6017 3.0987
Residual 42.2445 6.4996
> -2 * c(logLik(fm2)) # deviance
[1] 15256
> ## Purely fixed-effects model for comparison
> ## Compare with Table 4.3, p. 51
> fm3 <- lm(langPOST ~ IQ.ver.cen, data = bdf)
> summary(fm3)
Call:
lm(formula = langPOST ~ IQ.ver.cen, data = bdf)
Residuals:
Min 1Q Median 3Q Max
-28.702 -4.394 0.606 5.260 26.221
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.9348 0.1492 274.3 <2e-16 ***
IQ.ver.cen 2.6539 0.0722 36.8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.14 on 2285 degrees of freedom
Multiple R-squared: 0.372, Adjusted R-squared: 0.372
F-statistic: 1.35e+03 on 1 and 2285 DF, p-value: <2e-16
> -2 * c(logLik(fm3)) # deviance
[1] 15478
> ## Model with average IQ for the school
> ## Compare with Table 4.4, p. 55
> fm4 <- update(fm2, langPOST ~ IQ.ver.cen + avg.IQ.ver.cen)
> summary(fm4)
Linear mixed-effects model fit by REML
Data: bdf
AIC BIC logLik
15242 15271 -7616.1
Random effects:
Formula: ~1 | schoolNR
(Intercept) Residual
StdDev: 2.8082 6.494
Fixed effects: langPOST ~ IQ.ver.cen + avg.IQ.ver.cen
Value Std.Error DF t-value p-value
(Intercept) 40.741 0.286595 2155 142.155 0
IQ.ver.cen 2.415 0.071676 2155 33.690 0
avg.IQ.ver.cen 1.589 0.314772 129 5.049 0
Correlation:
(Intr) IQ.vr.
IQ.ver.cen 0.000
avg.IQ.ver.cen 0.077 -0.228
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.130749 -0.642218 0.060944 0.702342 3.152993
Number of Observations: 2287
Number of Groups: 131
> VarCorr(fm4)
schoolNR = pdLogChol(1)
Variance StdDev
(Intercept) 7.8859 2.8082
Residual 42.1723 6.4940
> -2 * c(logLik(fm4)) # deviance
[1] 15232
======
ch05.R
======
> library(nlme)
> # data(bdf)
> ## Model with random slope for IQ.ver.cen
> ## Compare with Table 5.1, p. 71.
> fm5 <- lme(langPOST ~ IQ.ver.cen + avg.IQ.ver.cen,
+ data = bdf, random = ~ IQ.ver.cen, method = "ML")
> summary(fm5)
Linear mixed-effects model fit by maximum likelihood
Data: bdf
AIC BIC logLik
15228 15268 -7606.8
Random effects:
Formula: ~IQ.ver.cen | schoolNR
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 2.81410 (Intr)
IQ.ver.cen 0.44728 -0.652
Residual 6.43043
Fixed effects: langPOST ~ IQ.ver.cen + avg.IQ.ver.cen
Value Std.Error DF t-value p-value
(Intercept) 40.750 0.28610 2155 142.433 0
IQ.ver.cen 2.459 0.08324 2155 29.541 0
avg.IQ.ver.cen 1.405 0.32168 129 4.368 0
Correlation:
(Intr) IQ.vr.
IQ.ver.cen -0.274
avg.IQ.ver.cen 0.028 -0.214
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.17512 -0.63982 0.06693 0.70462 2.71089
Number of Observations: 2287
Number of Groups: 131
> VarCorr(fm5)
schoolNR = pdLogChol(IQ.ver.cen)
Variance StdDev Corr
(Intercept) 7.91916 2.81410 (Intr)
IQ.ver.cen 0.20006 0.44728 -0.652
Residual 41.35049 6.43043
> -2 * c(logLik(fm5)) # deviance
[1] 15214
> ## Add centered class size and interaction
> ## Compare with Table 5.2, p. 75
> fm6 <- update(fm5, langPOST ~ avg.IQ.ver.cen + IQ.ver.cen * grpSiz.cen)
> summary(fm6)
Linear mixed-effects model fit by maximum likelihood
Data: bdf
AIC BIC logLik
15226 15278 -7604.2
Random effects:
Formula: ~IQ.ver.cen | schoolNR
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 2.76882 (Intr)
IQ.ver.cen 0.42132 -0.658
Residual 6.43136
Fixed effects: langPOST ~ avg.IQ.ver.cen + IQ.ver.cen + grpSiz.cen + IQ.ver.cen:grpSiz.cen
Value Std.Error DF t-value p-value
(Intercept) 40.893 0.29249 2153 139.809 0.0000
avg.IQ.ver.cen 1.246 0.32642 129 3.818 0.0002
IQ.ver.cen 2.443 0.08233 2153 29.674 0.0000
grpSiz.cen 0.057 0.03691 2153 1.556 0.1198
IQ.ver.cen:grpSiz.cen -0.022 0.01091 2153 -1.989 0.0468
Correlation:
(Intr) a.IQ.. IQ.vr. grpSz.
avg.IQ.ver.cen -0.024
IQ.ver.cen -0.276 -0.195
grpSiz.cen 0.249 -0.175 -0.086
IQ.ver.cen:grpSiz.cen -0.118 0.169 0.032 -0.233
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.163071 -0.639694 0.063419 0.710478 2.687724
Number of Observations: 2287
Number of Groups: 131
> VarCorr(fm6)
schoolNR = pdLogChol(IQ.ver.cen)
Variance StdDev Corr
(Intercept) 7.66638 2.76882 (Intr)
IQ.ver.cen 0.17751 0.42132 -0.658
Residual 41.36242 6.43136
> -2 * c(logLik(fm6)) # deviance
[1] 15208
>
> proc.time()
user system elapsed
0.514 0.024 0.531