2025-01-12 00:52:51 +08:00

96 lines
3.4 KiB
R

library(survival)
library(splines)
aeq <- function(x, y) all.equal(as.vector(x), as.vector(y))
# A contrived example for the tt function
#
mkdata <- function(n, beta) {
age <- runif(n, 20, 60)
x <- rbinom(n, 1, .5)
futime <- rep(40, n) # everyone has 40 years of follow-up
status <- rep(0, n)
dtime <- runif(n/2, 1, 40) # 1/2 of them die
dtime <- sort(dtime)
# The risk is set to beta[1]*x + beta[2]* f(current_age)
# where f= 0 up to age 40, rises linear to age 70, flat after that
for (i in 1:length(dtime)) {
atrisk <- (futime >= dtime[i])
c.age <- age + dtime
age2 <- pmin(30, pmax(0, c.age-40))
xbeta <- beta[1]*x + beta[2]*age2
# Select a death according to risk
risk <- ifelse(atrisk, exp(xbeta), 0)
dead <- sample(1:n, 1, prob=risk/sum(risk))
futime[dead] <- dtime[i]
status[dead] <- 1
}
data.frame(futime=round(futime,1), status=status, age=age, x=x, risk=risk,
casewt = sample(1:5, n, replace=TRUE),
grp = sample(1:15, n, replace=TRUE))
}
set.seed(1953) # a good year
# The functional form won't be well estimated with n=100, but a large
# n makes the test slow, and as a validity test n=100 and n=1000 are equally
# good.
tdata <- mkdata(100, c(log(1.5), 2/30)) # data set has many ties
dtime <- sort(unique(tdata$futime[tdata$status==1]))
data2 <- survSplit(Surv(futime, status) ~., tdata, cut=dtime)
data2$c.age <- data2$age + data2$futime # current age
# fit1 uses data at the event times, fit2$c.age might have a
# wider range due to censorings. To make the two fits agree
# fix the knots. I know a priori that 20 to 101 will cover it.
ns2 <- function(x) ns(x, Boundary.knots=c(20, 101), knots=c(45, 60, 75))
fit1 <- coxph(Surv(futime, status)~ x + tt(age), tdata,
tt= function(x, t, ...) ns2(x+t))
fit2 <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2)
aeq(coef(fit1), coef(fit2))
aeq(vcov(fit1), vcov(fit2))
#
# Check that cluster, weight, and offset were correctly expanded
#
fit3a <- coxph(Surv(futime, status)~ x + tt(age), tdata, weights=casewt,
tt= function(x, t, ...) ns2(x+t))
fit3b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2,
weights=casewt)
aeq(coef(fit3a), coef(fit3b))
aeq(vcov(fit3a), vcov(fit3b))
fit4a <- coxph(Surv(futime, status)~ x + tt(age), tdata,
tt= function(x, t, ...) ns2(x+t), cluster=grp)
fit4b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2,
cluster=grp)
fit4c <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age) + cluster(grp),
data2)
aeq(coef(fit4a), coef(fit4b))
aeq(vcov(fit4a), vcov(fit4b))
aeq(coef(fit4a), coef(fit4c))
aeq(vcov(fit4a), vcov(fit4c))
fit5a <- coxph(Surv(futime, status)~ x + tt(age) + offset(grp/10), tdata,
tt= function(x, t, ...) ns2(x+t),)
fit5b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age)+ offset(grp/10)
, data=data2)
aeq(coef(fit5a), coef(fit5b))
aeq(vcov(fit5a), vcov(fit5b))
# Check that strata is correct
fit6a <- coxph(Surv(futime, status) ~ x + tt(age) + strata(grp), tdata,
tt = function(x, t, ...) (x+t)^2)
fit6b <- coxph(Surv(tstart, futime, status) ~ x + I(c.age^2) +strata(grp), data2)
aeq(coef(fit6a), coef(fit6b))
aeq(vcov(fit6a), vcov(fit6b))