2025-01-12 00:52:51 +08:00

207 lines
6.9 KiB
Plaintext

R Under development (unstable) (2024-04-17 r86441) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(survival)
> options(na.action=na.exclude) # preserve missings
> options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
>
> # Tests of the weighted Cox model
> # This is section 1.3 of my appendix -- not yet found in the book
> # though, it awaits the next edition
> #
> # Similar data set to test1, but add weights,
> # a double-death/censor tied time
> # a censored last subject
> # The latter two are cases covered only feebly elsewhere.
> #
> # The data set testw2 has the same data, but done via replication
> #
> aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
>
> testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5),
+ status= c(1,0,1,1,1,0,0,1,0),
+ x= c(2,0,1,1,0,1,0,1,0),
+ wt = c(1,2,3,4,3,2,1,2,1),
+ id = 1:9)
> # Expanded data set
> testw2 <- testw1[rep(1:9, testw1$wt), -4]
> row.names(testw2) <- NULL
> indx <- match(1:9, testw2$id)
>
> # Breslow estimate
> byhand <- function(beta, newx=0) {
+ r <- exp(beta)
+ loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5) +2*log(2*r+1))
+ hazard <- c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1))
+ xbar <- c((2*r^2 + 11*r)*hazard[1], 11*r/(11*r +5), r*hazard[3])
+ U <- 11- (xbar[1] + 10*xbar[2] + 2*xbar[3])
+ imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 +
+ 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3] - xbar[3]^2)
+
+ temp <- cumsum(hazard)
+ risk <- c(r^2, 1,r,r,1,r,1,r,1)
+ expected <- risk* temp[c(1,1,2,2,2,2,2,3,3)]
+
+ # The matrix of weights, one row per obs, one col per death
+ # deaths at 1,2,2,2, and 4
+ riskmat <- matrix(c(1,1,1,1,1,1,1,1,1,
+ 0,0,1,1,1,1,1,1,1,
+ 0,0,1,1,1,1,1,1,1,
+ 0,0,1,1,1,1,1,1,1,
+ 0,0,0,0,0,0,0,1,1), ncol=5)
+ wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat
+
+ x <- c(2,0,1,1,0,1,0,1,0)
+ status <- c(1,0,1,1,1,0,0,1,0)
+ wt <- c(1,2,3,4,3,2,1,2,1)
+ # Table of sums for score and Schoenfeld resids
+ hazmat <- riskmat %*% diag(c(1,3,4,3,2)/colSums(wtmat))
+ dM <- -risk*hazmat #Expected part
+ dM[1,1] <- dM[1,1] +1 # deaths at time 1
+ for (i in 2:4) dM[i+1, i] <- dM[i+1,i] +1
+ dM[8,5] <- dM[8,5] +1
+ mart <- rowSums(dM)
+ resid <-dM * outer(x, xbar[c(1,2,2,2,3)] ,'-')
+
+ # Increments to the variance of the hazard
+ var.g <- cumsum(hazard^2/ c(1,10,2))
+ var.d <- cumsum((xbar-newx)*hazard)
+
+ list(loglik=loglik, U=U, imat=imat, hazard=hazard, xbar=xbar,
+ mart=c(1,0,1,1,1,0,0,1,0)-expected, expected=expected,
+ score=rowSums(resid), schoen=c(2,1,1,0,1) - xbar[c(1,2,2,2,3)],
+ varhaz=(var.g + var.d^2/imat)* exp(2*beta*newx))
+ }
>
> aeq(byhand(0)$expected, c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify
[1] TRUE
>
> fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt,
+ method='breslow', iter=0)
> fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0)
> fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow')
> fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow')
>
> aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx])
[1] TRUE
> aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx])
[1] TRUE
> aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho')))
[1] TRUE
>
> truth0 <- byhand(0,pi)
> aeq(fit0$loglik[1], truth0$loglik)
[1] TRUE
> aeq(1/truth0$imat, fit0$var)
[1] TRUE
> aeq(truth0$mart, fit0$residuals)
[1] TRUE
> aeq(truth0$schoen, resid(fit0, 'schoen'))
[1] TRUE
> aeq(truth0$score, resid(fit0, 'score'))
[1] TRUE
> sfit <- survfit(fit0, list(x=pi), censor=FALSE)
> aeq(sfit$std.err^2, truth0$varhaz)
[1] TRUE
> aeq(-log(sfit$surv), cumsum(truth0$hazard))
[1] TRUE
>
> truth <- byhand(0.85955744, .3)
> aeq(truth$loglik, fit$loglik[2])
[1] TRUE
> aeq(1/truth$imat, fit$var)
[1] TRUE
> aeq(truth$mart, fit$residuals)
[1] TRUE
> aeq(truth$schoen, resid(fit, 'schoen'))
[1] TRUE
> aeq(truth$score, resid(fit, 'score'))
[1] TRUE
>
> sfit <- survfit(fit, list(x=.3), censor=FALSE)
> aeq(sfit$std.err^2, truth$varhaz)
[1] TRUE
> aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coefficients*.3)))
[1] TRUE
>
>
> fit0
Call:
coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt,
method = "breslow", iter = 0)
coef exp(coef) se(coef) z p
x 0.0000 1.0000 0.5858 0 1
Likelihood ratio test=0 on 1 df, p=1
n= 9, number of events= 5
> summary(fit)
Call:
coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt,
method = "breslow")
n= 9, number of events= 5
coef exp(coef) se(coef) z Pr(>|z|)
x 0.8596 2.3621 0.7131 1.205 0.228
exp(coef) exp(-coef) lower .95 upper .95
x 2.362 0.4233 0.5839 9.556
Concordance= 0.637 (se = 0.161 )
Likelihood ratio test= 1.69 on 1 df, p=0.2
Wald test = 1.45 on 1 df, p=0.2
Score (logrank) test = 1.52 on 1 df, p=0.2
> resid(fit0, type='score')
1 2 3 4 5 6
1.24653740 0.03601108 0.10056700 0.10056700 -0.22180142 -0.21193300
7 8 9
0.46569858 -0.10082189 0.91014302
> resid(fit0, type='scho')
1 2 2 2 4
1.3157895 0.3125000 0.3125000 -0.6875000 0.3333333
>
> resid(fit, type='score')
1 2 3 4 5 6
0.88681615 0.02497653 0.03608964 0.03608964 -0.54297652 -0.12528780
7 8 9
0.29564605 -0.09476911 0.58400064
> resid(fit, type='scho')
1 2 2 2 4
1.0368337 0.1613774 0.1613774 -0.8386226 0.1746960
> aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx])
[1] TRUE
> aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx])
[1] TRUE
> aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho')))
[1] TRUE
> rr1 <- resid(fit, type='mart')
> rr2 <- resid(fit, type='mart', weighted=T)
> aeq(rr2/rr1, testw1$wt)
[1] TRUE
>
> rr1 <- resid(fit, type='score')
> rr2 <- resid(fit, type='score', weighted=T)
> aeq(rr2/rr1, testw1$wt)
[1] TRUE
>
>
> proc.time()
user system elapsed
0.423 0.031 0.452