2025-01-12 00:52:51 +08:00

73 lines
1.6 KiB
Plaintext

<%@include file="includes/setup.md.rsp"%>
<%@string colname="colMeans2"%>
<%@string rowname="rowMeans2"%>
<%@meta title="${colname}() and ${rowname}() benchmarks"%>
<%@meta author="Henrik Bengtsson"%>
<%@meta date="2017-03-31"%>
<%@include file="${header}"%>
# <%@meta name="title"%>
This report benchmark the performance of <%=colname%>() and <%=rowname%>() against alternative methods.
## Alternative methods
* apply() + mean()
* .colMeans() and .rowMeans()
* colMeans() and rowMeans()
<% for (mode in c("integer", "double")) { %>
## Data type "<%=mode%>"
### Data
```r
<%=withCapture({
<%@include file="R/random-matrices.R"%>
data <- rmatrices(mode = mode)
})%>
```
### Results
<% for (dataLabel in names(data)) { %>
<% mprintf("%s: %s\n", mode, dataLabel) %>
#### <%=dataLabel%> <%=mode%> matrix
```r
<%=withCapture({
X <- data[[.dataLabel.]]
gc()
colStats <- microbenchmark(
colMeans2 = colMeans2(X, na.rm = FALSE),
.colMeans = .colMeans(X, m = nrow(X), n = ncol(X), na.rm = FALSE),
colMeans = colMeans(X, na.rm = FALSE),
"apply+mean" = apply(X, MARGIN = 2L, FUN = mean, na.rm = FALSE),
unit = "ms"
)
X <- t(X)
gc()
rowStats <- microbenchmark(
rowMeans2 = rowMeans2(X, na.rm = FALSE),
.rowMeans = .rowMeans(X, m = nrow(X), n = ncol(X), na.rm = FALSE),
rowMeans = rowMeans(X, na.rm = FALSE),
"apply+mean" = apply(X, MARGIN = 1L, FUN = mean, na.rm = FALSE),
unit = "ms"
)
})%>
```
<% crBenchmarkResults(colStats, rowStats, tags=c(mode, dataLabel)) %>
<% } # for (dataLabel ...) %>
<% } # for (mode ...) %>
<%@include file="${footer}"%>