2025-01-12 00:52:51 +08:00

76 lines
2.1 KiB
R

## ----include = FALSE----------------------------------------------------------
library(magrittr)
options(scipen = 3)
knitr::opts_chunk$set(comment = "#>", collapse = TRUE)
## -----------------------------------------------------------------------------
library(magrittr)
car_data <-
mtcars %>%
subset(hp > 100) %>%
aggregate(. ~ cyl, data = ., FUN = . %>% mean %>% round(2)) %>%
transform(kpl = mpg %>% multiply_by(0.4251)) %>%
print
## -----------------------------------------------------------------------------
car_data <-
transform(aggregate(. ~ cyl,
data = subset(mtcars, hp > 100),
FUN = function(x) round(mean(x), 2)),
kpl = mpg*0.4251)
## ---- eval = FALSE------------------------------------------------------------
# car_data %>%
# (function(x) {
# if (nrow(x) > 2)
# rbind(head(x, 1), tail(x, 1))
# else x
# })
## -----------------------------------------------------------------------------
car_data %>%
{
if (nrow(.) > 0)
rbind(head(., 1), tail(., 1))
else .
}
## -----------------------------------------------------------------------------
1:10 %>% (substitute(f(), list(f = sum)))
## ---- fig.keep='none'---------------------------------------------------------
rnorm(200) %>%
matrix(ncol = 2) %T>%
plot %>% # plot usually does not return anything.
colSums
## ---- eval = FALSE------------------------------------------------------------
# iris %>%
# subset(Sepal.Length > mean(Sepal.Length)) %$%
# cor(Sepal.Length, Sepal.Width)
#
# data.frame(z = rnorm(100)) %$%
# ts.plot(z)
## ---- eval = FALSE------------------------------------------------------------
# iris$Sepal.Length %<>% sqrt
## -----------------------------------------------------------------------------
rnorm(1000) %>%
multiply_by(5) %>%
add(5) %>%
{
cat("Mean:", mean(.),
"Variance:", var(.), "\n")
head(.)
}
## ---- results = 'hide'--------------------------------------------------------
rnorm(100) %>% `*`(5) %>% `+`(5) %>%
{
cat("Mean:", mean(.), "Variance:", var(.), "\n")
head(.)
}