5018 lines
155 KiB
Plaintext
5018 lines
155 KiB
Plaintext
|
||
R Under development (unstable) (2023-07-13 r84685) -- "Unsuffered Consequences"
|
||
Copyright (C) 2023 The R Foundation for Statistical Computing
|
||
Platform: aarch64-apple-darwin22.5.0
|
||
|
||
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
||
You are welcome to redistribute it under certain conditions.
|
||
Type 'license()' or 'licence()' for distribution details.
|
||
|
||
Natural language support but running in an English locale
|
||
|
||
R is a collaborative project with many contributors.
|
||
Type 'contributors()' for more information and
|
||
'citation()' on how to cite R or R packages in publications.
|
||
|
||
Type 'demo()' for some demos, 'help()' for on-line help, or
|
||
'help.start()' for an HTML browser interface to help.
|
||
Type 'q()' to quit R.
|
||
|
||
> pkgname <- "MASS"
|
||
> source(file.path(R.home("share"), "R", "examples-header.R"))
|
||
> options(warn = 1)
|
||
> library('MASS')
|
||
>
|
||
> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
|
||
> base::assign(".old_wd", base::getwd(), pos = 'CheckExEnv')
|
||
> cleanEx()
|
||
> nameEx("Insurance")
|
||
> ### * Insurance
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: Insurance
|
||
> ### Title: Numbers of Car Insurance claims
|
||
> ### Aliases: Insurance
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## main-effects fit as Poisson GLM with offset
|
||
> glm(Claims ~ District + Group + Age + offset(log(Holders)),
|
||
+ data = Insurance, family = poisson)
|
||
|
||
Call: glm(formula = Claims ~ District + Group + Age + offset(log(Holders)),
|
||
family = poisson, data = Insurance)
|
||
|
||
Coefficients:
|
||
(Intercept) District2 District3 District4 Group.L Group.Q
|
||
-1.810508 0.025868 0.038524 0.234205 0.429708 0.004632
|
||
Group.C Age.L Age.Q Age.C
|
||
-0.029294 -0.394432 -0.000355 -0.016737
|
||
|
||
Degrees of Freedom: 63 Total (i.e. Null); 54 Residual
|
||
Null Deviance: 236.3
|
||
Residual Deviance: 51.42 AIC: 388.7
|
||
>
|
||
> # same via loglm
|
||
> loglm(Claims ~ District + Group + Age + offset(log(Holders)),
|
||
+ data = Insurance)
|
||
Call:
|
||
loglm(formula = Claims ~ District + Group + Age + offset(log(Holders)),
|
||
data = Insurance)
|
||
|
||
Statistics:
|
||
X^2 df P(> X^2)
|
||
Likelihood Ratio 51.42003 54 0.5745071
|
||
Pearson 48.62933 54 0.6809086
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("Null")
|
||
> ### * Null
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: Null
|
||
> ### Title: Null Spaces of Matrices
|
||
> ### Aliases: Null
|
||
> ### Keywords: algebra
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # The function is currently defined as
|
||
> function(M)
|
||
+ {
|
||
+ tmp <- qr(M)
|
||
+ set <- if(tmp$rank == 0L) seq_len(ncol(M)) else -seq_len(tmp$rank)
|
||
+ qr.Q(tmp, complete = TRUE)[, set, drop = FALSE]
|
||
+ }
|
||
function (M)
|
||
{
|
||
tmp <- qr(M)
|
||
set <- if (tmp$rank == 0L)
|
||
seq_len(ncol(M))
|
||
else -seq_len(tmp$rank)
|
||
qr.Q(tmp, complete = TRUE)[, set, drop = FALSE]
|
||
}
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("OME")
|
||
> ### * OME
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: OME
|
||
> ### Title: Tests of Auditory Perception in Children with OME
|
||
> ### Aliases: OME
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # Fit logistic curve from p = 0.5 to p = 1.0
|
||
> fp1 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/scal)),
|
||
+ c("L75", "scal"),
|
||
+ function(x,L75,scal)NULL)
|
||
> nls(Correct/Trials ~ fp1(Loud, L75, scal), data = OME,
|
||
+ start = c(L75=45, scal=3))
|
||
Nonlinear regression model
|
||
model: Correct/Trials ~ fp1(Loud, L75, scal)
|
||
data: OME
|
||
L75 scal
|
||
44.149 3.775
|
||
residual sum-of-squares: 69.88
|
||
|
||
Number of iterations to convergence: 4
|
||
Achieved convergence tolerance: 7.016e-06
|
||
> nls(Correct/Trials ~ fp1(Loud, L75, scal),
|
||
+ data = OME[OME$Noise == "coherent",],
|
||
+ start=c(L75=45, scal=3))
|
||
Nonlinear regression model
|
||
model: Correct/Trials ~ fp1(Loud, L75, scal)
|
||
data: OME[OME$Noise == "coherent", ]
|
||
L75 scal
|
||
47.993 1.259
|
||
residual sum-of-squares: 30.35
|
||
|
||
Number of iterations to convergence: 5
|
||
Achieved convergence tolerance: 4.895e-06
|
||
> nls(Correct/Trials ~ fp1(Loud, L75, scal),
|
||
+ data = OME[OME$Noise == "incoherent",],
|
||
+ start = c(L75=45, scal=3))
|
||
Nonlinear regression model
|
||
model: Correct/Trials ~ fp1(Loud, L75, scal)
|
||
data: OME[OME$Noise == "incoherent", ]
|
||
L75 scal
|
||
38.87 2.17
|
||
residual sum-of-squares: 23.73
|
||
|
||
Number of iterations to convergence: 11
|
||
Achieved convergence tolerance: 3.846e-06
|
||
>
|
||
> # individual fits for each experiment
|
||
>
|
||
> aa <- factor(OME$Age)
|
||
> ab <- 10*OME$ID + unclass(aa)
|
||
> ac <- unclass(factor(ab))
|
||
> OME$UID <- as.vector(ac)
|
||
> OME$UIDn <- OME$UID + 0.1*(OME$Noise == "incoherent")
|
||
> rm(aa, ab, ac)
|
||
> OMEi <- OME
|
||
>
|
||
> library(nlme)
|
||
> fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/2)),
|
||
+ "L75", function(x,L75) NULL)
|
||
> dec <- getOption("OutDec")
|
||
> options(show.error.messages = FALSE, OutDec=".")
|
||
> OMEi.nls <- nlsList(Correct/Trials ~ fp2(Loud, L75) | UIDn,
|
||
+ data = OMEi, start = list(L75=45), control = list(maxiter=100))
|
||
> options(show.error.messages = TRUE, OutDec=dec)
|
||
> tmp <- sapply(OMEi.nls, function(X)
|
||
+ {if(is.null(X)) NA else as.vector(coef(X))})
|
||
> OMEif <- data.frame(UID = round(as.numeric((names(tmp)))),
|
||
+ Noise = rep(c("coherent", "incoherent"), 110),
|
||
+ L75 = as.vector(tmp), stringsAsFactors = TRUE)
|
||
> OMEif$Age <- OME$Age[match(OMEif$UID, OME$UID)]
|
||
> OMEif$OME <- OME$OME[match(OMEif$UID, OME$UID)]
|
||
> OMEif <- OMEif[OMEif$L75 > 30,]
|
||
> summary(lm(L75 ~ Noise/Age, data = OMEif, na.action = na.omit))
|
||
|
||
Call:
|
||
lm(formula = L75 ~ Noise/Age, data = OMEif, na.action = na.omit)
|
||
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-13.0022 -1.9878 0.3346 2.0229 16.3260
|
||
|
||
Coefficients:
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
(Intercept) 47.73580 0.76456 62.435 < 2e-16 ***
|
||
Noiseincoherent -4.87352 1.11247 -4.381 1.92e-05 ***
|
||
Noisecoherent:Age -0.02785 0.02349 -1.186 0.237
|
||
Noiseincoherent:Age -0.12219 0.02589 -4.719 4.50e-06 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Residual standard error: 3.774 on 196 degrees of freedom
|
||
(17 observations deleted due to missingness)
|
||
Multiple R-squared: 0.5246, Adjusted R-squared: 0.5173
|
||
F-statistic: 72.09 on 3 and 196 DF, p-value: < 2.2e-16
|
||
|
||
> summary(lm(L75 ~ Noise/(Age + OME), data = OMEif,
|
||
+ subset = (Age >= 30 & Age <= 60),
|
||
+ na.action = na.omit), correlation = FALSE)
|
||
|
||
Call:
|
||
lm(formula = L75 ~ Noise/(Age + OME), data = OMEif, subset = (Age >=
|
||
30 & Age <= 60), na.action = na.omit)
|
||
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-10.4514 -2.0588 0.0194 1.6827 15.9738
|
||
|
||
Coefficients:
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
(Intercept) 50.21090 1.74482 28.777 < 2e-16 ***
|
||
Noiseincoherent -5.97491 2.70148 -2.212 0.02890 *
|
||
Noisecoherent:Age -0.09358 0.03586 -2.609 0.01023 *
|
||
Noiseincoherent:Age -0.15155 0.04151 -3.651 0.00039 ***
|
||
Noisecoherent:OMElow 0.45103 1.07594 0.419 0.67583
|
||
Noiseincoherent:OMElow -0.14075 1.24537 -0.113 0.91021
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Residual standard error: 3.7 on 119 degrees of freedom
|
||
(17 observations deleted due to missingness)
|
||
Multiple R-squared: 0.6073, Adjusted R-squared: 0.5908
|
||
F-statistic: 36.81 on 5 and 119 DF, p-value: < 2.2e-16
|
||
|
||
>
|
||
> # Or fit by weighted least squares
|
||
> fpl75 <- deriv(~ sqrt(n)*(r/n - 0.5 - 0.5/(1 + exp(-(x-L75)/scal))),
|
||
+ c("L75", "scal"),
|
||
+ function(r,n,x,L75,scal) NULL)
|
||
> nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),
|
||
+ data = OME[OME$Noise == "coherent",],
|
||
+ start = c(L75=45, scal=3))
|
||
Nonlinear regression model
|
||
model: 0 ~ fpl75(Correct, Trials, Loud, L75, scal)
|
||
data: OME[OME$Noise == "coherent", ]
|
||
L75 scal
|
||
47.798 1.296
|
||
residual sum-of-squares: 91.72
|
||
|
||
Number of iterations to convergence: 5
|
||
Achieved convergence tolerance: 9.302e-06
|
||
> nls(0 ~ fpl75(Correct, Trials, Loud, L75, scal),
|
||
+ data = OME[OME$Noise == "incoherent",],
|
||
+ start = c(L75=45, scal=3))
|
||
Nonlinear regression model
|
||
model: 0 ~ fpl75(Correct, Trials, Loud, L75, scal)
|
||
data: OME[OME$Noise == "incoherent", ]
|
||
L75 scal
|
||
38.553 2.078
|
||
residual sum-of-squares: 60.19
|
||
|
||
Number of iterations to convergence: 8
|
||
Achieved convergence tolerance: 4.55e-06
|
||
>
|
||
> # Test to see if the curves shift with age
|
||
> fpl75age <- deriv(~sqrt(n)*(r/n - 0.5 - 0.5/(1 +
|
||
+ exp(-(x-L75-slope*age)/scal))),
|
||
+ c("L75", "slope", "scal"),
|
||
+ function(r,n,x,age,L75,slope,scal) NULL)
|
||
> OME.nls1 <-
|
||
+ nls(0 ~ fpl75age(Correct, Trials, Loud, Age, L75, slope, scal),
|
||
+ data = OME[OME$Noise == "coherent",],
|
||
+ start = c(L75=45, slope=0, scal=2))
|
||
> sqrt(diag(vcov(OME.nls1)))
|
||
L75 slope scal
|
||
0.61091761 0.01665916 0.17566450
|
||
>
|
||
> OME.nls2 <-
|
||
+ nls(0 ~ fpl75age(Correct, Trials, Loud, Age, L75, slope, scal),
|
||
+ data = OME[OME$Noise == "incoherent",],
|
||
+ start = c(L75=45, slope=0, scal=2))
|
||
> sqrt(diag(vcov(OME.nls2)))
|
||
L75 slope scal
|
||
0.49553854 0.01348281 0.24453836
|
||
>
|
||
> # Now allow random effects by using NLME
|
||
> OMEf <- OME[rep(1:nrow(OME), OME$Trials),]
|
||
> OMEf$Resp <- with(OME, rep(rep(c(1,0), length(Trials)),
|
||
+ t(cbind(Correct, Trials-Correct))))
|
||
> OMEf <- OMEf[, -match(c("Correct", "Trials"), names(OMEf))]
|
||
>
|
||
> ## Not run:
|
||
> ##D ## these fail in R on most platforms
|
||
> ##D fp2 <- deriv(~ 0.5 + 0.5/(1 + exp(-(x-L75)/exp(lsc))),
|
||
> ##D c("L75", "lsc"),
|
||
> ##D function(x, L75, lsc) NULL)
|
||
> ##D try(summary(nlme(Resp ~ fp2(Loud, L75, lsc),
|
||
> ##D fixed = list(L75 ~ Age, lsc ~ 1),
|
||
> ##D random = L75 + lsc ~ 1 | UID,
|
||
> ##D data = OMEf[OMEf$Noise == "coherent",], method = "ML",
|
||
> ##D start = list(fixed=c(L75=c(48.7, -0.03), lsc=0.24)), verbose = TRUE)))
|
||
> ##D
|
||
> ##D try(summary(nlme(Resp ~ fp2(Loud, L75, lsc),
|
||
> ##D fixed = list(L75 ~ Age, lsc ~ 1),
|
||
> ##D random = L75 + lsc ~ 1 | UID,
|
||
> ##D data = OMEf[OMEf$Noise == "incoherent",], method = "ML",
|
||
> ##D start = list(fixed=c(L75=c(41.5, -0.1), lsc=0)), verbose = TRUE)))
|
||
> ## End(Not run)
|
||
>
|
||
>
|
||
> cleanEx()
|
||
|
||
detaching ‘package:nlme’
|
||
|
||
> nameEx("Skye")
|
||
> ### * Skye
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: Skye
|
||
> ### Title: AFM Compositions of Aphyric Skye Lavas
|
||
> ### Aliases: Skye
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # ternary() is from the on-line answers.
|
||
> ternary <- function(X, pch = par("pch"), lcex = 1,
|
||
+ add = FALSE, ord = 1:3, ...)
|
||
+ {
|
||
+ X <- as.matrix(X)
|
||
+ if(any(X < 0)) stop("X must be non-negative")
|
||
+ s <- drop(X %*% rep(1, ncol(X)))
|
||
+ if(any(s<=0)) stop("each row of X must have a positive sum")
|
||
+ if(max(abs(s-1)) > 1e-6) {
|
||
+ warning("row(s) of X will be rescaled")
|
||
+ X <- X / s
|
||
+ }
|
||
+ X <- X[, ord]
|
||
+ s3 <- sqrt(1/3)
|
||
+ if(!add)
|
||
+ {
|
||
+ oldpty <- par("pty")
|
||
+ on.exit(par(pty=oldpty))
|
||
+ par(pty="s")
|
||
+ plot(c(-s3, s3), c(0.5-s3, 0.5+s3), type="n", axes=FALSE,
|
||
+ xlab="", ylab="")
|
||
+ polygon(c(0, -s3, s3), c(1, 0, 0), density=0)
|
||
+ lab <- NULL
|
||
+ if(!is.null(dn <- dimnames(X))) lab <- dn[[2]]
|
||
+ if(length(lab) < 3) lab <- as.character(1:3)
|
||
+ eps <- 0.05 * lcex
|
||
+ text(c(0, s3+eps*0.7, -s3-eps*0.7),
|
||
+ c(1+eps, -0.1*eps, -0.1*eps), lab, cex=lcex)
|
||
+ }
|
||
+ points((X[,2] - X[,3])*s3, X[,1], ...)
|
||
+ }
|
||
>
|
||
> ternary(Skye/100, ord=c(1,3,2))
|
||
>
|
||
>
|
||
>
|
||
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
||
> cleanEx()
|
||
> nameEx("addterm")
|
||
> ### * addterm
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: addterm
|
||
> ### Title: Try All One-Term Additions to a Model
|
||
> ### Aliases: addterm addterm.default addterm.glm addterm.lm
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)
|
||
> quine.lo <- aov(log(Days+2.5) ~ 1, quine)
|
||
> addterm(quine.lo, quine.hi, test="F")
|
||
Single term additions
|
||
|
||
Model:
|
||
log(Days + 2.5) ~ 1
|
||
Df Sum of Sq RSS AIC F Value Pr(F)
|
||
<none> 106.787 -43.664
|
||
Eth 1 10.6820 96.105 -57.052 16.0055 0.0001006 ***
|
||
Sex 1 0.5969 106.190 -42.483 0.8094 0.3698057
|
||
Age 3 4.7469 102.040 -44.303 2.2019 0.0904804 .
|
||
Lrn 1 0.0043 106.783 -41.670 0.0058 0.9392083
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
> house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family=poisson,
|
||
+ data=housing)
|
||
> addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test="Chisq")
|
||
Single term additions
|
||
|
||
Model:
|
||
Freq ~ Infl * Type * Cont + Sat
|
||
Df Deviance AIC LRT Pr(Chi)
|
||
<none> 217.46 610.43
|
||
Infl:Sat 4 111.08 512.05 106.371 < 2.2e-16 ***
|
||
Type:Sat 6 156.79 561.76 60.669 3.292e-11 ***
|
||
Cont:Sat 2 212.33 609.30 5.126 0.07708 .
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> house.glm1 <- update(house.glm0, . ~ . + Sat*(Infl+Type+Cont))
|
||
> addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test = "Chisq")
|
||
Single term additions
|
||
|
||
Model:
|
||
Freq ~ Infl + Type + Cont + Sat + Infl:Type + Infl:Cont + Type:Cont +
|
||
Infl:Sat + Type:Sat + Cont:Sat + Infl:Type:Cont
|
||
Df Deviance AIC LRT Pr(Chi)
|
||
<none> 38.662 455.63
|
||
Infl:Type:Sat 12 16.107 457.08 22.5550 0.03175 *
|
||
Infl:Cont:Sat 4 37.472 462.44 1.1901 0.87973
|
||
Type:Cont:Sat 6 28.256 457.23 10.4064 0.10855
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("anova.negbin")
|
||
> ### * anova.negbin
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: anova.negbin
|
||
> ### Title: Likelihood Ratio Tests for Negative Binomial GLMs
|
||
> ### Aliases: anova.negbin
|
||
> ### Keywords: regression
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> m1 <- glm.nb(Days ~ Eth*Age*Lrn*Sex, quine, link = log)
|
||
> m2 <- update(m1, . ~ . - Eth:Age:Lrn:Sex)
|
||
> anova(m2, m1)
|
||
Likelihood ratio tests of Negative Binomial Models
|
||
|
||
Response: Days
|
||
Model
|
||
1 Eth + Age + Lrn + Sex + Eth:Age + Eth:Lrn + Age:Lrn + Eth:Sex + Age:Sex + Lrn:Sex + Eth:Age:Lrn + Eth:Age:Sex + Eth:Lrn:Sex + Age:Lrn:Sex
|
||
2 Eth * Age * Lrn * Sex
|
||
theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
|
||
1 1.90799 120 -1040.728
|
||
2 1.92836 118 -1039.324 1 vs 2 2 1.403843 0.4956319
|
||
> anova(m2)
|
||
Warning in anova.negbin(m2) : tests made without re-estimating 'theta'
|
||
Analysis of Deviance Table
|
||
|
||
Model: Negative Binomial(1.908), link: log
|
||
|
||
Response: Days
|
||
|
||
Terms added sequentially (first to last)
|
||
|
||
|
||
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
|
||
NULL 145 270.03
|
||
Eth 1 19.0989 144 250.93 1.241e-05 ***
|
||
Age 3 16.3483 141 234.58 0.000962 ***
|
||
Lrn 1 3.5449 140 231.04 0.059730 .
|
||
Sex 1 0.3989 139 230.64 0.527666
|
||
Eth:Age 3 14.6030 136 216.03 0.002189 **
|
||
Eth:Lrn 1 0.0447 135 215.99 0.832601
|
||
Age:Lrn 2 1.7482 133 214.24 0.417240
|
||
Eth:Sex 1 1.1470 132 213.09 0.284183
|
||
Age:Sex 3 21.9746 129 191.12 6.603e-05 ***
|
||
Lrn:Sex 1 0.0277 128 191.09 0.867712
|
||
Eth:Age:Lrn 2 9.0099 126 182.08 0.011054 *
|
||
Eth:Age:Sex 3 4.8218 123 177.26 0.185319
|
||
Eth:Lrn:Sex 1 3.3160 122 173.94 0.068608 .
|
||
Age:Lrn:Sex 2 6.3941 120 167.55 0.040882 *
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("area")
|
||
> ### * area
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: area
|
||
> ### Title: Adaptive Numerical Integration
|
||
> ### Aliases: area
|
||
> ### Keywords: nonlinear
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> area(sin, 0, pi) # integrate the sin function from 0 to pi.
|
||
[1] 2
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("bacteria")
|
||
> ### * bacteria
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: bacteria
|
||
> ### Title: Presence of Bacteria after Drug Treatments
|
||
> ### Aliases: bacteria
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> contrasts(bacteria$trt) <- structure(contr.sdif(3),
|
||
+ dimnames = list(NULL, c("drug", "encourage")))
|
||
> ## fixed effects analyses
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(glm(y ~ trt * week, binomial, data = bacteria))
|
||
|
||
Call:
|
||
glm(formula = y ~ trt * week, family = binomial, data = bacteria)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 1.97548 0.30053 6.573 4.92e-11 ***
|
||
trtdrug -0.99848 0.69490 -1.437 0.15075
|
||
trtencourage 0.83865 0.73482 1.141 0.25374
|
||
week -0.11814 0.04460 -2.649 0.00807 **
|
||
trtdrug:week -0.01722 0.10570 -0.163 0.87061
|
||
trtencourage:week -0.07043 0.10964 -0.642 0.52060
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for binomial family taken to be 1)
|
||
|
||
Null deviance: 217.38 on 219 degrees of freedom
|
||
Residual deviance: 203.12 on 214 degrees of freedom
|
||
AIC: 215.12
|
||
|
||
Number of Fisher Scoring iterations: 4
|
||
|
||
> summary(glm(y ~ trt + week, binomial, data = bacteria))
|
||
|
||
Call:
|
||
glm(formula = y ~ trt + week, family = binomial, data = bacteria)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 1.96018 0.29705 6.599 4.15e-11 ***
|
||
trtdrug -1.10667 0.42519 -2.603 0.00925 **
|
||
trtencourage 0.45502 0.42766 1.064 0.28735
|
||
week -0.11577 0.04414 -2.623 0.00872 **
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for binomial family taken to be 1)
|
||
|
||
Null deviance: 217.38 on 219 degrees of freedom
|
||
Residual deviance: 203.81 on 216 degrees of freedom
|
||
AIC: 211.81
|
||
|
||
Number of Fisher Scoring iterations: 4
|
||
|
||
> summary(glm(y ~ trt + I(week > 2), binomial, data = bacteria))
|
||
|
||
Call:
|
||
glm(formula = y ~ trt + I(week > 2), family = binomial, data = bacteria)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 2.2479 0.3560 6.315 2.71e-10 ***
|
||
trtdrug -1.1187 0.4288 -2.609 0.00909 **
|
||
trtencourage 0.4815 0.4330 1.112 0.26614
|
||
I(week > 2)TRUE -1.2949 0.4104 -3.155 0.00160 **
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for binomial family taken to be 1)
|
||
|
||
Null deviance: 217.38 on 219 degrees of freedom
|
||
Residual deviance: 199.18 on 216 degrees of freedom
|
||
AIC: 207.18
|
||
|
||
Number of Fisher Scoring iterations: 5
|
||
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
> # conditional random-effects analysis
|
||
> library(survival)
|
||
> bacteria$Time <- rep(1, nrow(bacteria))
|
||
> coxph(Surv(Time, unclass(y)) ~ week + strata(ID),
|
||
+ data = bacteria, method = "exact")
|
||
Call:
|
||
coxph(formula = Surv(Time, unclass(y)) ~ week + strata(ID), data = bacteria,
|
||
method = "exact")
|
||
|
||
coef exp(coef) se(coef) z p
|
||
week -0.16256 0.84996 0.05472 -2.971 0.00297
|
||
|
||
Likelihood ratio test=9.85 on 1 df, p=0.001696
|
||
n= 220, number of events= 177
|
||
> coxph(Surv(Time, unclass(y)) ~ factor(week) + strata(ID),
|
||
+ data = bacteria, method = "exact")
|
||
Call:
|
||
coxph(formula = Surv(Time, unclass(y)) ~ factor(week) + strata(ID),
|
||
data = bacteria, method = "exact")
|
||
|
||
coef exp(coef) se(coef) z p
|
||
factor(week)2 0.1983 1.2193 0.7241 0.274 0.7842
|
||
factor(week)4 -1.4206 0.2416 0.6665 -2.131 0.0331
|
||
factor(week)6 -1.6615 0.1899 0.6825 -2.434 0.0149
|
||
factor(week)11 -1.6752 0.1873 0.6780 -2.471 0.0135
|
||
|
||
Likelihood ratio test=15.45 on 4 df, p=0.003854
|
||
n= 220, number of events= 177
|
||
> coxph(Surv(Time, unclass(y)) ~ I(week > 2) + strata(ID),
|
||
+ data = bacteria, method = "exact")
|
||
Call:
|
||
coxph(formula = Surv(Time, unclass(y)) ~ I(week > 2) + strata(ID),
|
||
data = bacteria, method = "exact")
|
||
|
||
coef exp(coef) se(coef) z p
|
||
I(week > 2)TRUE -1.6701 0.1882 0.4817 -3.467 0.000527
|
||
|
||
Likelihood ratio test=15.15 on 1 df, p=9.927e-05
|
||
n= 220, number of events= 177
|
||
>
|
||
> # PQL glmm analysis
|
||
> library(nlme)
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
|
||
+ family = binomial, data = bacteria))
|
||
iteration 1
|
||
iteration 2
|
||
iteration 3
|
||
iteration 4
|
||
iteration 5
|
||
iteration 6
|
||
Linear mixed-effects model fit by maximum likelihood
|
||
Data: bacteria
|
||
AIC BIC logLik
|
||
NA NA NA
|
||
|
||
Random effects:
|
||
Formula: ~1 | ID
|
||
(Intercept) Residual
|
||
StdDev: 1.410637 0.7800511
|
||
|
||
Variance function:
|
||
Structure: fixed weights
|
||
Formula: ~invwt
|
||
Fixed effects: y ~ trt + I(week > 2)
|
||
Value Std.Error DF t-value p-value
|
||
(Intercept) 2.7447864 0.3784193 169 7.253294 0.0000
|
||
trtdrug -1.2473553 0.6440635 47 -1.936696 0.0588
|
||
trtencourage 0.4930279 0.6699339 47 0.735935 0.4654
|
||
I(week > 2)TRUE -1.6072570 0.3583379 169 -4.485311 0.0000
|
||
Correlation:
|
||
(Intr) trtdrg trtncr
|
||
trtdrug 0.009
|
||
trtencourage 0.036 -0.518
|
||
I(week > 2)TRUE -0.710 0.047 -0.046
|
||
|
||
Standardized Within-Group Residuals:
|
||
Min Q1 Med Q3 Max
|
||
-5.1985361 0.1572336 0.3513075 0.4949482 1.7448845
|
||
|
||
Number of Observations: 220
|
||
Number of Groups: 50
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
|
||
detaching ‘package:nlme’, ‘package:survival’
|
||
|
||
> nameEx("bandwidth.nrd")
|
||
> ### * bandwidth.nrd
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: bandwidth.nrd
|
||
> ### Title: Bandwidth for density() via Normal Reference Distribution
|
||
> ### Aliases: bandwidth.nrd
|
||
> ### Keywords: dplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # The function is currently defined as
|
||
> function(x)
|
||
+ {
|
||
+ r <- quantile(x, c(0.25, 0.75))
|
||
+ h <- (r[2] - r[1])/1.34
|
||
+ 4 * 1.06 * min(sqrt(var(x)), h) * length(x)^(-1/5)
|
||
+ }
|
||
function (x)
|
||
{
|
||
r <- quantile(x, c(0.25, 0.75))
|
||
h <- (r[2] - r[1])/1.34
|
||
4 * 1.06 * min(sqrt(var(x)), h) * length(x)^(-1/5)
|
||
}
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("bcv")
|
||
> ### * bcv
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: bcv
|
||
> ### Title: Biased Cross-Validation for Bandwidth Selection
|
||
> ### Aliases: bcv
|
||
> ### Keywords: dplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> bcv(geyser$duration)
|
||
[1] 0.8940809
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("beav1")
|
||
> ### * beav1
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: beav1
|
||
> ### Title: Body Temperature Series of Beaver 1
|
||
> ### Aliases: beav1
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> beav1 <- within(beav1,
|
||
+ hours <- 24*(day-346) + trunc(time/100) + (time%%100)/60)
|
||
> plot(beav1$hours, beav1$temp, type="l", xlab="time",
|
||
+ ylab="temperature", main="Beaver 1")
|
||
> usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr=usr)
|
||
> lines(beav1$hours, beav1$activ, type="s", lty=2)
|
||
> temp <- ts(c(beav1$temp[1:82], NA, beav1$temp[83:114]),
|
||
+ start = 9.5, frequency = 6)
|
||
> activ <- ts(c(beav1$activ[1:82], NA, beav1$activ[83:114]),
|
||
+ start = 9.5, frequency = 6)
|
||
>
|
||
> acf(temp[1:53])
|
||
> acf(temp[1:53], type = "partial")
|
||
> ar(temp[1:53])
|
||
|
||
Call:
|
||
ar(x = temp[1:53])
|
||
|
||
Coefficients:
|
||
1
|
||
0.8222
|
||
|
||
Order selected 1 sigma^2 estimated as 0.01011
|
||
> act <- c(rep(0, 10), activ)
|
||
> X <- cbind(1, act = act[11:125], act1 = act[10:124],
|
||
+ act2 = act[9:123], act3 = act[8:122])
|
||
> alpha <- 0.80
|
||
> stemp <- as.vector(temp - alpha*lag(temp, -1))
|
||
> sX <- X[-1, ] - alpha * X[-115,]
|
||
> beav1.ls <- lm(stemp ~ -1 + sX, na.action = na.omit)
|
||
> summary(beav1.ls, correlation = FALSE)
|
||
|
||
Call:
|
||
lm(formula = stemp ~ -1 + sX, na.action = na.omit)
|
||
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-0.21317 -0.04317 0.00683 0.05483 0.37683
|
||
|
||
Coefficients:
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
sX 36.85587 0.03922 939.833 < 2e-16 ***
|
||
sXact 0.25400 0.03930 6.464 3.37e-09 ***
|
||
sXact1 0.17096 0.05100 3.352 0.00112 **
|
||
sXact2 0.16202 0.05147 3.148 0.00215 **
|
||
sXact3 0.10548 0.04310 2.448 0.01605 *
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Residual standard error: 0.08096 on 104 degrees of freedom
|
||
(5 observations deleted due to missingness)
|
||
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
|
||
F-statistic: 1.81e+05 on 5 and 104 DF, p-value: < 2.2e-16
|
||
|
||
> rm(temp, activ)
|
||
>
|
||
>
|
||
>
|
||
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
||
> cleanEx()
|
||
> nameEx("beav2")
|
||
> ### * beav2
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: beav2
|
||
> ### Title: Body Temperature Series of Beaver 2
|
||
> ### Aliases: beav2
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> attach(beav2)
|
||
> beav2$hours <- 24*(day-307) + trunc(time/100) + (time%%100)/60
|
||
> plot(beav2$hours, beav2$temp, type = "l", xlab = "time",
|
||
+ ylab = "temperature", main = "Beaver 2")
|
||
> usr <- par("usr"); usr[3:4] <- c(-0.2, 8); par(usr = usr)
|
||
> lines(beav2$hours, beav2$activ, type = "s", lty = 2)
|
||
>
|
||
> temp <- ts(temp, start = 8+2/3, frequency = 6)
|
||
> activ <- ts(activ, start = 8+2/3, frequency = 6)
|
||
> acf(temp[activ == 0]); acf(temp[activ == 1]) # also look at PACFs
|
||
> ar(temp[activ == 0]); ar(temp[activ == 1])
|
||
|
||
Call:
|
||
ar(x = temp[activ == 0])
|
||
|
||
Coefficients:
|
||
1
|
||
0.7392
|
||
|
||
Order selected 1 sigma^2 estimated as 0.02011
|
||
|
||
Call:
|
||
ar(x = temp[activ == 1])
|
||
|
||
Coefficients:
|
||
1
|
||
0.7894
|
||
|
||
Order selected 1 sigma^2 estimated as 0.01792
|
||
>
|
||
> arima(temp, order = c(1,0,0), xreg = activ)
|
||
|
||
Call:
|
||
arima(x = temp, order = c(1, 0, 0), xreg = activ)
|
||
|
||
Coefficients:
|
||
ar1 intercept activ
|
||
0.8733 37.1920 0.6139
|
||
s.e. 0.0684 0.1187 0.1381
|
||
|
||
sigma^2 estimated as 0.01518: log likelihood = 66.78, aic = -125.55
|
||
> dreg <- cbind(sin = sin(2*pi*beav2$hours/24), cos = cos(2*pi*beav2$hours/24))
|
||
> arima(temp, order = c(1,0,0), xreg = cbind(active=activ, dreg))
|
||
|
||
Call:
|
||
arima(x = temp, order = c(1, 0, 0), xreg = cbind(active = activ, dreg))
|
||
|
||
Coefficients:
|
||
ar1 intercept active dreg.sin dreg.cos
|
||
0.7905 37.1674 0.5322 -0.282 0.1201
|
||
s.e. 0.0681 0.0939 0.1282 0.105 0.0997
|
||
|
||
sigma^2 estimated as 0.01434: log likelihood = 69.83, aic = -127.67
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> library(nlme) # for gls and corAR1
|
||
> beav2.gls <- gls(temp ~ activ, data = beav2, correlation = corAR1(0.8),
|
||
+ method = "ML")
|
||
> summary(beav2.gls)
|
||
Generalized least squares fit by maximum likelihood
|
||
Model: temp ~ activ
|
||
Data: beav2
|
||
AIC BIC logLik
|
||
-125.5505 -115.1298 66.77523
|
||
|
||
Correlation Structure: AR(1)
|
||
Formula: ~1
|
||
Parameter estimate(s):
|
||
Phi
|
||
0.8731771
|
||
|
||
Coefficients:
|
||
Value Std.Error t-value p-value
|
||
(Intercept) 37.19195 0.1131328 328.7460 0
|
||
activ 0.61418 0.1087286 5.6487 0
|
||
|
||
Correlation:
|
||
(Intr)
|
||
activ -0.582
|
||
|
||
Standardized residuals:
|
||
Min Q1 Med Q3 Max
|
||
-2.42080776 -0.61510519 -0.03573836 0.81641138 2.15153495
|
||
|
||
Residual standard error: 0.2527856
|
||
Degrees of freedom: 100 total; 98 residual
|
||
> summary(update(beav2.gls, subset = 6:100))
|
||
Generalized least squares fit by maximum likelihood
|
||
Model: temp ~ activ
|
||
Data: beav2
|
||
Subset: 6:100
|
||
AIC BIC logLik
|
||
-124.981 -114.7654 66.49048
|
||
|
||
Correlation Structure: AR(1)
|
||
Formula: ~1
|
||
Parameter estimate(s):
|
||
Phi
|
||
0.8380448
|
||
|
||
Coefficients:
|
||
Value Std.Error t-value p-value
|
||
(Intercept) 37.25001 0.09634047 386.6496 0
|
||
activ 0.60277 0.09931904 6.0690 0
|
||
|
||
Correlation:
|
||
(Intr)
|
||
activ -0.657
|
||
|
||
Standardized residuals:
|
||
Min Q1 Med Q3 Max
|
||
-2.0231494 -0.8910348 -0.1497564 0.7640939 2.2719468
|
||
|
||
Residual standard error: 0.2188542
|
||
Degrees of freedom: 95 total; 93 residual
|
||
> detach("beav2"); rm(temp, activ)
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
>
|
||
>
|
||
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
||
> cleanEx()
|
||
|
||
detaching ‘package:nlme’
|
||
|
||
> nameEx("birthwt")
|
||
> ### * birthwt
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: birthwt
|
||
> ### Title: Risk Factors Associated with Low Infant Birth Weight
|
||
> ### Aliases: birthwt
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> bwt <- with(birthwt, {
|
||
+ race <- factor(race, labels = c("white", "black", "other"))
|
||
+ ptd <- factor(ptl > 0)
|
||
+ ftv <- factor(ftv)
|
||
+ levels(ftv)[-(1:2)] <- "2+"
|
||
+ data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0),
|
||
+ ptd, ht = (ht > 0), ui = (ui > 0), ftv)
|
||
+ })
|
||
> options(contrasts = c("contr.treatment", "contr.poly"))
|
||
> glm(low ~ ., binomial, bwt)
|
||
|
||
Call: glm(formula = low ~ ., family = binomial, data = bwt)
|
||
|
||
Coefficients:
|
||
(Intercept) age lwt raceblack raceother smokeTRUE
|
||
0.82302 -0.03723 -0.01565 1.19241 0.74068 0.75553
|
||
ptdTRUE htTRUE uiTRUE ftv1 ftv2+
|
||
1.34376 1.91317 0.68020 -0.43638 0.17901
|
||
|
||
Degrees of Freedom: 188 Total (i.e. Null); 178 Residual
|
||
Null Deviance: 234.7
|
||
Residual Deviance: 195.5 AIC: 217.5
|
||
>
|
||
>
|
||
>
|
||
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
|
||
> cleanEx()
|
||
> nameEx("boxcox")
|
||
> ### * boxcox
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: boxcox
|
||
> ### Title: Box-Cox Transformations for Linear Models
|
||
> ### Aliases: boxcox boxcox.default boxcox.formula boxcox.lm
|
||
> ### Keywords: regression models hplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> boxcox(Volume ~ log(Height) + log(Girth), data = trees,
|
||
+ lambda = seq(-0.25, 0.25, length.out = 10))
|
||
>
|
||
> boxcox(Days+1 ~ Eth*Sex*Age*Lrn, data = quine,
|
||
+ lambda = seq(-0.05, 0.45, length.out = 20))
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("caith")
|
||
> ### * caith
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: caith
|
||
> ### Title: Colours of Eyes and Hair of People in Caithness
|
||
> ### Aliases: caith
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> ## The signs can vary by platform
|
||
> corresp(caith)
|
||
First canonical correlation(s): 0.4463684
|
||
|
||
Row scores:
|
||
blue light medium dark
|
||
0.89679252 0.98731818 -0.07530627 -1.57434710
|
||
|
||
Column scores:
|
||
fair red medium dark black
|
||
1.21871379 0.52257500 0.09414671 -1.31888486 -2.45176017
|
||
> ## IGNORE_RDIFF_END
|
||
> dimnames(caith)[[2]] <- c("F", "R", "M", "D", "B")
|
||
> par(mfcol=c(1,3))
|
||
> plot(corresp(caith, nf=2)); title("symmetric")
|
||
> plot(corresp(caith, nf=2), type="rows"); title("rows")
|
||
> plot(corresp(caith, nf=2), type="col"); title("columns")
|
||
> par(mfrow=c(1,1))
|
||
>
|
||
>
|
||
>
|
||
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
||
> cleanEx()
|
||
> nameEx("cement")
|
||
> ### * cement
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: cement
|
||
> ### Title: Heat Evolved by Setting Cements
|
||
> ### Aliases: cement
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> lm(y ~ x1 + x2 + x3 + x4, cement)
|
||
|
||
Call:
|
||
lm(formula = y ~ x1 + x2 + x3 + x4, data = cement)
|
||
|
||
Coefficients:
|
||
(Intercept) x1 x2 x3 x4
|
||
62.4054 1.5511 0.5102 0.1019 -0.1441
|
||
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("contr.sdif")
|
||
> ### * contr.sdif
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: contr.sdif
|
||
> ### Title: Successive Differences Contrast Coding
|
||
> ### Aliases: contr.sdif
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> (A <- contr.sdif(6))
|
||
2-1 3-2 4-3 5-4 6-5
|
||
1 -0.8333333 -0.6666667 -0.5 -0.3333333 -0.1666667
|
||
2 0.1666667 -0.6666667 -0.5 -0.3333333 -0.1666667
|
||
3 0.1666667 0.3333333 -0.5 -0.3333333 -0.1666667
|
||
4 0.1666667 0.3333333 0.5 -0.3333333 -0.1666667
|
||
5 0.1666667 0.3333333 0.5 0.6666667 -0.1666667
|
||
6 0.1666667 0.3333333 0.5 0.6666667 0.8333333
|
||
> zapsmall(ginv(A))
|
||
[,1] [,2] [,3] [,4] [,5] [,6]
|
||
[1,] -1 1 0 0 0 0
|
||
[2,] 0 -1 1 0 0 0
|
||
[3,] 0 0 -1 1 0 0
|
||
[4,] 0 0 0 -1 1 0
|
||
[5,] 0 0 0 0 -1 1
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("corresp")
|
||
> ### * corresp
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: corresp
|
||
> ### Title: Simple Correspondence Analysis
|
||
> ### Aliases: corresp corresp.xtabs corresp.data.frame corresp.default
|
||
> ### corresp.factor corresp.formula corresp.matrix
|
||
> ### Keywords: category multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> ## The signs can vary by platform
|
||
> (ct <- corresp(~ Age + Eth, data = quine))
|
||
First canonical correlation(s): 0.05317534
|
||
|
||
Age scores:
|
||
F0 F1 F2 F3
|
||
-0.3344445 1.4246090 -1.0320002 -0.4612728
|
||
|
||
Eth scores:
|
||
A N
|
||
-1.0563816 0.9466276
|
||
> plot(ct)
|
||
>
|
||
> corresp(caith)
|
||
First canonical correlation(s): 0.4463684
|
||
|
||
Row scores:
|
||
blue light medium dark
|
||
0.89679252 0.98731818 -0.07530627 -1.57434710
|
||
|
||
Column scores:
|
||
fair red medium dark black
|
||
1.21871379 0.52257500 0.09414671 -1.31888486 -2.45176017
|
||
> biplot(corresp(caith, nf = 2))
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("cov.rob")
|
||
> ### * cov.rob
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: cov.rob
|
||
> ### Title: Resistant Estimation of Multivariate Location and Scatter
|
||
> ### Aliases: cov.rob cov.mve cov.mcd
|
||
> ### Keywords: robust multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> set.seed(123)
|
||
> cov.rob(stackloss)
|
||
$center
|
||
Air.Flow Water.Temp Acid.Conc. stack.loss
|
||
56.3750 20.0000 85.4375 13.0625
|
||
|
||
$cov
|
||
Air.Flow Water.Temp Acid.Conc. stack.loss
|
||
Air.Flow 23.050000 6.666667 16.625000 19.308333
|
||
Water.Temp 6.666667 5.733333 5.333333 7.733333
|
||
Acid.Conc. 16.625000 5.333333 34.395833 13.837500
|
||
stack.loss 19.308333 7.733333 13.837500 18.462500
|
||
|
||
$msg
|
||
[1] "20 singular samples of size 5 out of 2500"
|
||
|
||
$crit
|
||
[1] 19.89056
|
||
|
||
$best
|
||
[1] 5 6 7 8 9 10 11 12 15 16 18 19 20
|
||
|
||
$n.obs
|
||
[1] 21
|
||
|
||
> cov.rob(stack.x, method = "mcd", nsamp = "exact")
|
||
$center
|
||
Air.Flow Water.Temp Acid.Conc.
|
||
56.70588 20.23529 85.52941
|
||
|
||
$cov
|
||
Air.Flow Water.Temp Acid.Conc.
|
||
Air.Flow 23.470588 7.573529 16.102941
|
||
Water.Temp 7.573529 6.316176 5.367647
|
||
Acid.Conc. 16.102941 5.367647 32.389706
|
||
|
||
$msg
|
||
[1] "266 singular samples of size 4 out of 5985"
|
||
|
||
$crit
|
||
[1] 5.472581
|
||
|
||
$best
|
||
[1] 4 5 6 7 8 9 10 11 12 13 14 20
|
||
|
||
$n.obs
|
||
[1] 21
|
||
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("cov.trob")
|
||
> ### * cov.trob
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: cov.trob
|
||
> ### Title: Covariance Estimation for Multivariate t Distribution
|
||
> ### Aliases: cov.trob
|
||
> ### Keywords: multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> cov.trob(stackloss)
|
||
$cov
|
||
Air.Flow Water.Temp Acid.Conc. stack.loss
|
||
Air.Flow 60.47035 17.027203 18.554452 62.28032
|
||
Water.Temp 17.02720 8.085857 5.604132 20.50469
|
||
Acid.Conc. 18.55445 5.604132 24.404633 16.91085
|
||
stack.loss 62.28032 20.504687 16.910855 72.80743
|
||
|
||
$center
|
||
Air.Flow Water.Temp Acid.Conc. stack.loss
|
||
58.96905 20.79263 86.05588 16.09028
|
||
|
||
$n.obs
|
||
[1] 21
|
||
|
||
$call
|
||
cov.trob(x = stackloss)
|
||
|
||
$iter
|
||
[1] 5
|
||
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("denumerate")
|
||
> ### * denumerate
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: denumerate
|
||
> ### Title: Transform an Allowable Formula for 'loglm' into one for 'terms'
|
||
> ### Aliases: denumerate denumerate.formula
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> denumerate(~(1+2+3)^3 + a/b)
|
||
~(.v1 + .v2 + .v3)^3 + a/b
|
||
> ## which gives ~ (.v1 + .v2 + .v3)^3 + a/b
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("dose.p")
|
||
> ### * dose.p
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: dose.p
|
||
> ### Title: Predict Doses for Binomial Assay model
|
||
> ### Aliases: dose.p print.glm.dose
|
||
> ### Keywords: regression models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ldose <- rep(0:5, 2)
|
||
> numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
|
||
> sex <- factor(rep(c("M", "F"), c(6, 6)))
|
||
> SF <- cbind(numdead, numalive = 20 - numdead)
|
||
> budworm.lg0 <- glm(SF ~ sex + ldose - 1, family = binomial)
|
||
>
|
||
> dose.p(budworm.lg0, cf = c(1,3), p = 1:3/4)
|
||
Dose SE
|
||
p = 0.25: 2.231265 0.2499089
|
||
p = 0.50: 3.263587 0.2297539
|
||
p = 0.75: 4.295910 0.2746874
|
||
> dose.p(update(budworm.lg0, family = binomial(link=probit)),
|
||
+ cf = c(1,3), p = 1:3/4)
|
||
Dose SE
|
||
p = 0.25: 2.191229 0.2384478
|
||
p = 0.50: 3.257703 0.2240685
|
||
p = 0.75: 4.324177 0.2668745
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("dropterm")
|
||
> ### * dropterm
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: dropterm
|
||
> ### Title: Try All One-Term Deletions from a Model
|
||
> ### Aliases: dropterm dropterm.default dropterm.glm dropterm.lm
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)
|
||
> quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
|
||
> dropterm(quine.nxt, test= "F")
|
||
Single term deletions
|
||
|
||
Model:
|
||
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age +
|
||
Eth:Lrn + Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Age + Eth:Sex:Lrn +
|
||
Eth:Age:Lrn + Sex:Age:Lrn
|
||
Df Sum of Sq RSS AIC F Value Pr(F)
|
||
<none> 64.099 -68.184
|
||
Eth:Sex:Age 3 0.97387 65.073 -71.982 0.60773 0.61125
|
||
Eth:Sex:Lrn 1 1.57879 65.678 -66.631 2.95567 0.08816 .
|
||
Eth:Age:Lrn 2 2.12841 66.227 -67.415 1.99230 0.14087
|
||
Sex:Age:Lrn 2 1.46623 65.565 -68.882 1.37247 0.25743
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> quine.stp <- stepAIC(quine.nxt,
|
||
+ scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),
|
||
+ trace = FALSE)
|
||
> dropterm(quine.stp, test = "F")
|
||
Single term deletions
|
||
|
||
Model:
|
||
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age +
|
||
Eth:Lrn + Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Lrn + Eth:Age:Lrn
|
||
Df Sum of Sq RSS AIC F Value Pr(F)
|
||
<none> 66.600 -72.597
|
||
Sex:Age 3 10.7959 77.396 -56.663 6.7542 0.0002933 ***
|
||
Eth:Sex:Lrn 1 3.0325 69.632 -68.096 5.6916 0.0185476 *
|
||
Eth:Age:Lrn 2 2.0960 68.696 -72.072 1.9670 0.1441822
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> quine.3 <- update(quine.stp, . ~ . - Eth:Age:Lrn)
|
||
> dropterm(quine.3, test = "F")
|
||
Single term deletions
|
||
|
||
Model:
|
||
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age +
|
||
Eth:Lrn + Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Lrn
|
||
Df Sum of Sq RSS AIC F Value Pr(F)
|
||
<none> 68.696 -72.072
|
||
Eth:Age 3 3.0312 71.727 -71.768 1.8679 0.1383323
|
||
Sex:Age 3 11.4272 80.123 -55.607 7.0419 0.0002037 ***
|
||
Age:Lrn 2 2.8149 71.511 -70.209 2.6020 0.0780701 .
|
||
Eth:Sex:Lrn 1 4.6956 73.391 -64.419 8.6809 0.0038268 **
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> quine.4 <- update(quine.3, . ~ . - Eth:Age)
|
||
> dropterm(quine.4, test = "F")
|
||
Single term deletions
|
||
|
||
Model:
|
||
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Lrn +
|
||
Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Lrn
|
||
Df Sum of Sq RSS AIC F Value Pr(F)
|
||
<none> 71.727 -71.768
|
||
Sex:Age 3 11.5656 83.292 -55.942 6.9873 0.0002147 ***
|
||
Age:Lrn 2 2.9118 74.639 -69.959 2.6387 0.0752793 .
|
||
Eth:Sex:Lrn 1 6.8181 78.545 -60.511 12.3574 0.0006052 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> quine.5 <- update(quine.4, . ~ . - Age:Lrn)
|
||
> dropterm(quine.5, test = "F")
|
||
Single term deletions
|
||
|
||
Model:
|
||
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Lrn +
|
||
Sex:Age + Sex:Lrn + Eth:Sex:Lrn
|
||
Df Sum of Sq RSS AIC F Value Pr(F)
|
||
<none> 74.639 -69.959
|
||
Sex:Age 3 9.9002 84.539 -57.774 5.8362 0.0008944 ***
|
||
Eth:Sex:Lrn 1 6.2988 80.937 -60.130 11.1396 0.0010982 **
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
> house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family=poisson,
|
||
+ data = housing)
|
||
> house.glm1 <- update(house.glm0, . ~ . + Sat*(Infl+Type+Cont))
|
||
> dropterm(house.glm1, test = "Chisq")
|
||
Single term deletions
|
||
|
||
Model:
|
||
Freq ~ Infl + Type + Cont + Sat + Infl:Type + Infl:Cont + Type:Cont +
|
||
Infl:Sat + Type:Sat + Cont:Sat + Infl:Type:Cont
|
||
Df Deviance AIC LRT Pr(Chi)
|
||
<none> 38.662 455.63
|
||
Infl:Sat 4 147.780 556.75 109.117 < 2.2e-16 ***
|
||
Type:Sat 6 100.889 505.86 62.227 1.586e-11 ***
|
||
Cont:Sat 2 54.722 467.69 16.060 0.0003256 ***
|
||
Infl:Type:Cont 6 43.952 448.92 5.290 0.5072454
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("eagles")
|
||
> ### * eagles
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: eagles
|
||
> ### Title: Foraging Ecology of Bald Eagles
|
||
> ### Aliases: eagles
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> eagles.glm <- glm(cbind(y, n - y) ~ P*A + V, data = eagles,
|
||
+ family = binomial)
|
||
> dropterm(eagles.glm)
|
||
Single term deletions
|
||
|
||
Model:
|
||
cbind(y, n - y) ~ P * A + V
|
||
Df Deviance AIC
|
||
<none> 0.333 23.073
|
||
V 1 53.737 74.478
|
||
P:A 1 6.956 27.696
|
||
> prof <- profile(eagles.glm)
|
||
> plot(prof)
|
||
> pairs(prof)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("epil")
|
||
> ### * epil
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: epil
|
||
> ### Title: Seizure Counts for Epileptics
|
||
> ### Aliases: epil
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(glm(y ~ lbase*trt + lage + V4, family = poisson,
|
||
+ data = epil), correlation = FALSE)
|
||
|
||
Call:
|
||
glm(formula = y ~ lbase * trt + lage + V4, family = poisson,
|
||
data = epil)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 1.89791 0.04260 44.552 < 2e-16 ***
|
||
lbase 0.94862 0.04360 21.759 < 2e-16 ***
|
||
trtprogabide -0.34588 0.06100 -5.670 1.42e-08 ***
|
||
lage 0.88760 0.11650 7.619 2.56e-14 ***
|
||
V4 -0.15977 0.05458 -2.927 0.00342 **
|
||
lbase:trtprogabide 0.56154 0.06352 8.841 < 2e-16 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for poisson family taken to be 1)
|
||
|
||
Null deviance: 2517.83 on 235 degrees of freedom
|
||
Residual deviance: 869.07 on 230 degrees of freedom
|
||
AIC: 1647
|
||
|
||
Number of Fisher Scoring iterations: 5
|
||
|
||
> ## IGNORE_RDIFF_END
|
||
> epil2 <- epil[epil$period == 1, ]
|
||
> epil2["period"] <- rep(0, 59); epil2["y"] <- epil2["base"]
|
||
> epil["time"] <- 1; epil2["time"] <- 4
|
||
> epil2 <- rbind(epil, epil2)
|
||
> epil2$pred <- unclass(epil2$trt) * (epil2$period > 0)
|
||
> epil2$subject <- factor(epil2$subject)
|
||
> epil3 <- aggregate(epil2, list(epil2$subject, epil2$period > 0),
|
||
+ function(x) if(is.numeric(x)) sum(x) else x[1])
|
||
> epil3$pred <- factor(epil3$pred,
|
||
+ labels = c("base", "placebo", "drug"))
|
||
>
|
||
> contrasts(epil3$pred) <- structure(contr.sdif(3),
|
||
+ dimnames = list(NULL, c("placebo-base", "drug-placebo")))
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(glm(y ~ pred + factor(subject) + offset(log(time)),
|
||
+ family = poisson, data = epil3), correlation = FALSE)
|
||
|
||
Call:
|
||
glm(formula = y ~ pred + factor(subject) + offset(log(time)),
|
||
family = poisson, data = epil3)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 1.122e+00 2.008e-01 5.590 2.28e-08 ***
|
||
predplacebo-base 1.087e-01 4.691e-02 2.318 0.020474 *
|
||
preddrug-placebo -1.016e-01 6.507e-02 -1.561 0.118431
|
||
factor(subject)2 -9.105e-16 2.828e-01 0.000 1.000000
|
||
factor(subject)3 -3.857e-01 3.144e-01 -1.227 0.219894
|
||
factor(subject)4 -1.744e-01 2.960e-01 -0.589 0.555847
|
||
factor(subject)5 1.577e+00 2.197e-01 7.178 7.08e-13 ***
|
||
factor(subject)6 6.729e-01 2.458e-01 2.738 0.006182 **
|
||
factor(subject)7 -4.082e-02 2.858e-01 -0.143 0.886411
|
||
factor(subject)8 1.758e+00 2.166e-01 8.117 4.77e-16 ***
|
||
factor(subject)9 5.878e-01 2.494e-01 2.356 0.018454 *
|
||
factor(subject)10 5.423e-01 2.515e-01 2.156 0.031060 *
|
||
factor(subject)11 1.552e+00 2.202e-01 7.048 1.81e-12 ***
|
||
factor(subject)12 9.243e-01 2.364e-01 3.910 9.22e-05 ***
|
||
factor(subject)13 3.075e-01 2.635e-01 1.167 0.243171
|
||
factor(subject)14 1.212e+00 2.278e-01 5.320 1.04e-07 ***
|
||
factor(subject)15 1.765e+00 2.164e-01 8.153 3.54e-16 ***
|
||
factor(subject)16 9.708e-01 2.348e-01 4.134 3.57e-05 ***
|
||
factor(subject)17 -4.082e-02 2.858e-01 -0.143 0.886411
|
||
factor(subject)18 2.236e+00 2.104e-01 10.629 < 2e-16 ***
|
||
factor(subject)19 2.776e-01 2.651e-01 1.047 0.295060
|
||
factor(subject)20 3.646e-01 2.603e-01 1.401 0.161324
|
||
factor(subject)21 3.922e-02 2.801e-01 0.140 0.888645
|
||
factor(subject)22 -8.338e-02 2.889e-01 -0.289 0.772894
|
||
factor(subject)23 1.823e-01 2.708e-01 0.673 0.500777
|
||
factor(subject)24 8.416e-01 2.393e-01 3.517 0.000436 ***
|
||
factor(subject)25 2.069e+00 2.123e-01 9.750 < 2e-16 ***
|
||
factor(subject)26 -5.108e-01 3.266e-01 -1.564 0.117799
|
||
factor(subject)27 -2.231e-01 3.000e-01 -0.744 0.456990
|
||
factor(subject)28 1.386e+00 2.236e-01 6.200 5.66e-10 ***
|
||
factor(subject)29 1.604e+00 2.227e-01 7.203 5.90e-13 ***
|
||
factor(subject)30 1.023e+00 2.372e-01 4.313 1.61e-05 ***
|
||
factor(subject)31 9.149e-02 2.821e-01 0.324 0.745700
|
||
factor(subject)32 -3.111e-02 2.909e-01 -0.107 0.914822
|
||
factor(subject)33 4.710e-01 2.597e-01 1.814 0.069736 .
|
||
factor(subject)34 3.887e-01 2.640e-01 1.473 0.140879
|
||
factor(subject)35 1.487e+00 2.250e-01 6.609 3.87e-11 ***
|
||
factor(subject)36 3.598e-01 2.656e-01 1.355 0.175551
|
||
factor(subject)37 -1.221e-01 2.979e-01 -0.410 0.681943
|
||
factor(subject)38 1.344e+00 2.283e-01 5.889 3.90e-09 ***
|
||
factor(subject)39 1.082e+00 2.354e-01 4.596 4.30e-06 ***
|
||
factor(subject)40 -7.687e-01 3.634e-01 -2.116 0.034384 *
|
||
factor(subject)41 1.656e-01 2.772e-01 0.597 0.550234
|
||
factor(subject)42 5.227e-02 2.848e-01 0.184 0.854388
|
||
factor(subject)43 1.543e+00 2.239e-01 6.891 5.54e-12 ***
|
||
factor(subject)44 9.605e-01 2.393e-01 4.014 5.96e-05 ***
|
||
factor(subject)45 1.177e+00 2.326e-01 5.061 4.18e-07 ***
|
||
factor(subject)46 -5.275e-01 3.355e-01 -1.572 0.115840
|
||
factor(subject)47 1.053e+00 2.363e-01 4.456 8.35e-06 ***
|
||
factor(subject)48 -5.275e-01 3.355e-01 -1.572 0.115840
|
||
factor(subject)49 2.949e+00 2.082e-01 14.168 < 2e-16 ***
|
||
factor(subject)50 3.887e-01 2.640e-01 1.473 0.140879
|
||
factor(subject)51 1.038e+00 2.367e-01 4.385 1.16e-05 ***
|
||
factor(subject)52 5.711e-01 2.548e-01 2.241 0.025023 *
|
||
factor(subject)53 1.670e+00 2.215e-01 7.538 4.76e-14 ***
|
||
factor(subject)54 4.443e-01 2.611e-01 1.702 0.088759 .
|
||
factor(subject)55 2.674e-01 2.709e-01 0.987 0.323618
|
||
factor(subject)56 1.124e+00 2.341e-01 4.800 1.59e-06 ***
|
||
factor(subject)57 2.674e-01 2.709e-01 0.987 0.323618
|
||
factor(subject)58 -6.017e-01 3.436e-01 -1.751 0.079911 .
|
||
factor(subject)59 -7.556e-02 2.942e-01 -0.257 0.797331
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for poisson family taken to be 1)
|
||
|
||
Null deviance: 3180.82 on 117 degrees of freedom
|
||
Residual deviance: 303.16 on 57 degrees of freedom
|
||
AIC: 1003.5
|
||
|
||
Number of Fisher Scoring iterations: 5
|
||
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
> summary(glmmPQL(y ~ lbase*trt + lage + V4,
|
||
+ random = ~ 1 | subject,
|
||
+ family = poisson, data = epil))
|
||
iteration 1
|
||
iteration 2
|
||
iteration 3
|
||
iteration 4
|
||
iteration 5
|
||
Linear mixed-effects model fit by maximum likelihood
|
||
Data: epil
|
||
AIC BIC logLik
|
||
NA NA NA
|
||
|
||
Random effects:
|
||
Formula: ~1 | subject
|
||
(Intercept) Residual
|
||
StdDev: 0.4442704 1.400807
|
||
|
||
Variance function:
|
||
Structure: fixed weights
|
||
Formula: ~invwt
|
||
Fixed effects: y ~ lbase * trt + lage + V4
|
||
Value Std.Error DF t-value p-value
|
||
(Intercept) 1.8696677 0.1055620 176 17.711554 0.0000
|
||
lbase 0.8818228 0.1292834 54 6.820849 0.0000
|
||
trtprogabide -0.3095253 0.1490438 54 -2.076740 0.0426
|
||
lage 0.5335460 0.3463119 54 1.540652 0.1292
|
||
V4 -0.1597696 0.0774521 176 -2.062819 0.0406
|
||
lbase:trtprogabide 0.3415425 0.2033325 54 1.679725 0.0988
|
||
Correlation:
|
||
(Intr) lbase trtprg lage V4
|
||
lbase -0.126
|
||
trtprogabide -0.691 0.089
|
||
lage -0.103 -0.038 0.088
|
||
V4 -0.162 0.000 0.000 0.000
|
||
lbase:trtprogabide 0.055 -0.645 -0.184 0.267 0.000
|
||
|
||
Standardized Within-Group Residuals:
|
||
Min Q1 Med Q3 Max
|
||
-2.13240534 -0.63871136 -0.08486339 0.41960195 4.97872138
|
||
|
||
Number of Observations: 236
|
||
Number of Groups: 59
|
||
> summary(glmmPQL(y ~ pred, random = ~1 | subject,
|
||
+ family = poisson, data = epil3))
|
||
iteration 1
|
||
iteration 2
|
||
iteration 3
|
||
iteration 4
|
||
iteration 5
|
||
iteration 6
|
||
iteration 7
|
||
iteration 8
|
||
Linear mixed-effects model fit by maximum likelihood
|
||
Data: epil3
|
||
AIC BIC logLik
|
||
NA NA NA
|
||
|
||
Random effects:
|
||
Formula: ~1 | subject
|
||
(Intercept) Residual
|
||
StdDev: 0.7257895 2.16629
|
||
|
||
Variance function:
|
||
Structure: fixed weights
|
||
Formula: ~invwt
|
||
Fixed effects: y ~ pred
|
||
Value Std.Error DF t-value p-value
|
||
(Intercept) 3.213631 0.10569117 58 30.405865 0.0000
|
||
predplacebo-base 0.110855 0.09989089 57 1.109763 0.2718
|
||
preddrug-placebo -0.105613 0.13480483 57 -0.783450 0.4366
|
||
Correlation:
|
||
(Intr) prdpl-
|
||
predplacebo-base 0.081
|
||
preddrug-placebo -0.010 -0.700
|
||
|
||
Standardized Within-Group Residuals:
|
||
Min Q1 Med Q3 Max
|
||
-2.0446864 -0.4765135 -0.1975651 0.3145761 2.6532834
|
||
|
||
Number of Observations: 118
|
||
Number of Groups: 59
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("farms")
|
||
> ### * farms
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: farms
|
||
> ### Title: Ecological Factors in Farm Management
|
||
> ### Aliases: farms
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> farms.mca <- mca(farms, abbrev = TRUE) # Use levels as names
|
||
> eqscplot(farms.mca$cs, type = "n")
|
||
> text(farms.mca$rs, cex = 0.7)
|
||
> text(farms.mca$cs, labels = dimnames(farms.mca$cs)[[1]], cex = 0.7)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("fitdistr")
|
||
> ### * fitdistr
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: fitdistr
|
||
> ### Title: Maximum-likelihood Fitting of Univariate Distributions
|
||
> ### Aliases: fitdistr
|
||
> ### Keywords: distribution htest
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## avoid spurious accuracy
|
||
> op <- options(digits = 3)
|
||
> set.seed(123)
|
||
> x <- rgamma(100, shape = 5, rate = 0.1)
|
||
> fitdistr(x, "gamma")
|
||
shape rate
|
||
6.4870 0.1365
|
||
(0.8946) (0.0196)
|
||
> ## now do this directly with more control.
|
||
> fitdistr(x, dgamma, list(shape = 1, rate = 0.1), lower = 0.001)
|
||
shape rate
|
||
6.4869 0.1365
|
||
(0.8944) (0.0196)
|
||
>
|
||
> set.seed(123)
|
||
> x2 <- rt(250, df = 9)
|
||
> fitdistr(x2, "t", df = 9)
|
||
m s
|
||
-0.0107 1.0441
|
||
( 0.0722) ( 0.0543)
|
||
> ## allow df to vary: not a very good idea!
|
||
> fitdistr(x2, "t")
|
||
Warning in dt((x - m)/s, df, log = TRUE) : NaNs produced
|
||
m s df
|
||
-0.00965 1.00617 6.62729
|
||
( 0.07147) ( 0.07707) ( 2.71033)
|
||
> ## now do fixed-df fit directly with more control.
|
||
> mydt <- function(x, m, s, df) dt((x-m)/s, df)/s
|
||
> fitdistr(x2, mydt, list(m = 0, s = 1), df = 9, lower = c(-Inf, 0))
|
||
m s
|
||
-0.0107 1.0441
|
||
( 0.0722) ( 0.0543)
|
||
>
|
||
> set.seed(123)
|
||
> x3 <- rweibull(100, shape = 4, scale = 100)
|
||
> fitdistr(x3, "weibull")
|
||
shape scale
|
||
4.080 99.984
|
||
( 0.313) ( 2.582)
|
||
>
|
||
> set.seed(123)
|
||
> x4 <- rnegbin(500, mu = 5, theta = 4)
|
||
> fitdistr(x4, "Negative Binomial")
|
||
size mu
|
||
4.216 4.945
|
||
(0.504) (0.147)
|
||
> options(op)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("fractions")
|
||
> ### * fractions
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: fractions
|
||
> ### Title: Rational Approximation
|
||
> ### Aliases: fractions Math.fractions Ops.fractions Summary.fractions
|
||
> ### [.fractions [<-.fractions as.character.fractions as.fractions
|
||
> ### is.fractions print.fractions t.fractions
|
||
> ### Keywords: math
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> X <- matrix(runif(25), 5, 5)
|
||
> zapsmall(solve(X, X/5)) # print near-zeroes as zero
|
||
[,1] [,2] [,3] [,4] [,5]
|
||
[1,] 0.2 0.0 0.0 0.0 0.0
|
||
[2,] 0.0 0.2 0.0 0.0 0.0
|
||
[3,] 0.0 0.0 0.2 0.0 0.0
|
||
[4,] 0.0 0.0 0.0 0.2 0.0
|
||
[5,] 0.0 0.0 0.0 0.0 0.2
|
||
> fractions(solve(X, X/5))
|
||
[,1] [,2] [,3] [,4] [,5]
|
||
[1,] 1/5 0 0 0 0
|
||
[2,] 0 1/5 0 0 0
|
||
[3,] 0 0 1/5 0 0
|
||
[4,] 0 0 0 1/5 0
|
||
[5,] 0 0 0 0 1/5
|
||
> fractions(solve(X, X/5)) + 1
|
||
[,1] [,2] [,3] [,4] [,5]
|
||
[1,] 6/5 1 1 1 1
|
||
[2,] 1 6/5 1 1 1
|
||
[3,] 1 1 6/5 1 1
|
||
[4,] 1 1 1 6/5 1
|
||
[5,] 1 1 1 1 6/5
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("galaxies")
|
||
> ### * galaxies
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: galaxies
|
||
> ### Title: Velocities for 82 Galaxies
|
||
> ### Aliases: galaxies
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> gal <- galaxies/1000
|
||
> c(width.SJ(gal, method = "dpi"), width.SJ(gal))
|
||
[1] 3.256151 2.566423
|
||
> plot(x = c(0, 40), y = c(0, 0.3), type = "n", bty = "l",
|
||
+ xlab = "velocity of galaxy (1000km/s)", ylab = "density")
|
||
> rug(gal)
|
||
> lines(density(gal, width = 3.25, n = 200), lty = 1)
|
||
> lines(density(gal, width = 2.56, n = 200), lty = 3)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("gamma.shape.glm")
|
||
> ### * gamma.shape.glm
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: gamma.shape
|
||
> ### Title: Estimate the Shape Parameter of the Gamma Distribution in a GLM
|
||
> ### Fit
|
||
> ### Aliases: gamma.shape gamma.shape.glm print.gamma.shape
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> clotting <- data.frame(
|
||
+ u = c(5,10,15,20,30,40,60,80,100),
|
||
+ lot1 = c(118,58,42,35,27,25,21,19,18),
|
||
+ lot2 = c(69,35,26,21,18,16,13,12,12))
|
||
> clot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma)
|
||
> gamma.shape(clot1)
|
||
|
||
Alpha: 538.1315
|
||
SE: 253.5991
|
||
>
|
||
> gm <- glm(Days + 0.1 ~ Age*Eth*Sex*Lrn,
|
||
+ quasi(link=log, variance="mu^2"), quine,
|
||
+ start = c(3, rep(0,31)))
|
||
> gamma.shape(gm, verbose = TRUE)
|
||
Initial estimate: 1.060344
|
||
Iter. 1 Alpha: 1.238408
|
||
Iter. 2 Alpha: 1.276997
|
||
Iter. 3 Alpha: 1.278343
|
||
Iter. 4 Alpha: 1.278345
|
||
|
||
Alpha: 1.2783449
|
||
SE: 0.1345175
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(gm, dispersion = gamma.dispersion(gm)) # better summary
|
||
|
||
Call:
|
||
glm(formula = Days + 0.1 ~ Age * Eth * Sex * Lrn, family = quasi(link = log,
|
||
variance = "mu^2"), data = quine, start = c(3, rep(0, 31)))
|
||
|
||
Coefficients: (4 not defined because of singularities)
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 3.06105 0.44223 6.922 4.46e-12 ***
|
||
AgeF1 -0.61870 0.59331 -1.043 0.297041
|
||
AgeF2 -2.31911 0.98885 -2.345 0.019014 *
|
||
AgeF3 -0.37623 0.53149 -0.708 0.479020
|
||
EthN -0.13789 0.62540 -0.220 0.825496
|
||
SexM -0.48844 0.59331 -0.823 0.410369
|
||
LrnSL -1.92965 0.98885 -1.951 0.051009 .
|
||
AgeF1:EthN 0.10249 0.82338 0.124 0.900942
|
||
AgeF2:EthN -0.50874 1.39845 -0.364 0.716017
|
||
AgeF3:EthN 0.06314 0.74584 0.085 0.932534
|
||
AgeF1:SexM 0.40695 0.94847 0.429 0.667884
|
||
AgeF2:SexM 3.06173 1.11626 2.743 0.006091 **
|
||
AgeF3:SexM 1.10841 0.74208 1.494 0.135267
|
||
EthN:SexM -0.74217 0.82338 -0.901 0.367394
|
||
AgeF1:LrnSL 2.60967 1.10114 2.370 0.017789 *
|
||
AgeF2:LrnSL 4.78434 1.36304 3.510 0.000448 ***
|
||
AgeF3:LrnSL NA NA NA NA
|
||
EthN:LrnSL 2.22936 1.39845 1.594 0.110899
|
||
SexM:LrnSL 1.56531 1.18112 1.325 0.185077
|
||
AgeF1:EthN:SexM -0.30235 1.32176 -0.229 0.819065
|
||
AgeF2:EthN:SexM 0.29742 1.57035 0.189 0.849780
|
||
AgeF3:EthN:SexM 0.82215 1.03277 0.796 0.425995
|
||
AgeF1:EthN:LrnSL -3.50803 1.54655 -2.268 0.023311 *
|
||
AgeF2:EthN:LrnSL -3.33529 1.92481 -1.733 0.083133 .
|
||
AgeF3:EthN:LrnSL NA NA NA NA
|
||
AgeF1:SexM:LrnSL -2.39791 1.51050 -1.587 0.112400
|
||
AgeF2:SexM:LrnSL -4.12161 1.60698 -2.565 0.010323 *
|
||
AgeF3:SexM:LrnSL NA NA NA NA
|
||
EthN:SexM:LrnSL -0.15305 1.66253 -0.092 0.926653
|
||
AgeF1:EthN:SexM:LrnSL 2.13480 2.08685 1.023 0.306317
|
||
AgeF2:EthN:SexM:LrnSL 2.11886 2.27882 0.930 0.352473
|
||
AgeF3:EthN:SexM:LrnSL NA NA NA NA
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for quasi family taken to be 0.7822615)
|
||
|
||
Null deviance: 190.40 on 145 degrees of freedom
|
||
Residual deviance: 128.36 on 118 degrees of freedom
|
||
AIC: NA
|
||
|
||
Number of Fisher Scoring iterations: 7
|
||
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("gehan")
|
||
> ### * gehan
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: gehan
|
||
> ### Title: Remission Times of Leukaemia Patients
|
||
> ### Aliases: gehan
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> library(survival)
|
||
> gehan.surv <- survfit(Surv(time, cens) ~ treat, data = gehan,
|
||
+ conf.type = "log-log")
|
||
> summary(gehan.surv)
|
||
Call: survfit(formula = Surv(time, cens) ~ treat, data = gehan, conf.type = "log-log")
|
||
|
||
treat=6-MP
|
||
time n.risk n.event survival std.err lower 95% CI upper 95% CI
|
||
6 21 3 0.857 0.0764 0.620 0.952
|
||
7 17 1 0.807 0.0869 0.563 0.923
|
||
10 15 1 0.753 0.0963 0.503 0.889
|
||
13 12 1 0.690 0.1068 0.432 0.849
|
||
16 11 1 0.627 0.1141 0.368 0.805
|
||
22 7 1 0.538 0.1282 0.268 0.747
|
||
23 6 1 0.448 0.1346 0.188 0.680
|
||
|
||
treat=control
|
||
time n.risk n.event survival std.err lower 95% CI upper 95% CI
|
||
1 21 2 0.9048 0.0641 0.67005 0.975
|
||
2 19 2 0.8095 0.0857 0.56891 0.924
|
||
3 17 1 0.7619 0.0929 0.51939 0.893
|
||
4 16 2 0.6667 0.1029 0.42535 0.825
|
||
5 14 2 0.5714 0.1080 0.33798 0.749
|
||
8 12 4 0.3810 0.1060 0.18307 0.578
|
||
11 8 2 0.2857 0.0986 0.11656 0.482
|
||
12 6 2 0.1905 0.0857 0.05948 0.377
|
||
15 4 1 0.1429 0.0764 0.03566 0.321
|
||
17 3 1 0.0952 0.0641 0.01626 0.261
|
||
22 2 1 0.0476 0.0465 0.00332 0.197
|
||
23 1 1 0.0000 NaN NA NA
|
||
|
||
> survreg(Surv(time, cens) ~ factor(pair) + treat, gehan, dist = "exponential")
|
||
Call:
|
||
survreg(formula = Surv(time, cens) ~ factor(pair) + treat, data = gehan,
|
||
dist = "exponential")
|
||
|
||
Coefficients:
|
||
(Intercept) factor(pair)2 factor(pair)3 factor(pair)4 factor(pair)5
|
||
2.0702861 2.1476909 1.8329493 1.7718527 1.4682566
|
||
factor(pair)6 factor(pair)7 factor(pair)8 factor(pair)9 factor(pair)10
|
||
1.8954775 0.5583010 2.5187140 2.2970513 2.4862208
|
||
factor(pair)11 factor(pair)12 factor(pair)13 factor(pair)14 factor(pair)15
|
||
1.0524472 1.8270477 1.6772567 1.7778672 2.0859913
|
||
factor(pair)16 factor(pair)17 factor(pair)18 factor(pair)19 factor(pair)20
|
||
3.0634288 0.7996252 1.5855018 1.4083884 0.4023946
|
||
factor(pair)21 treatcontrol
|
||
1.9698390 -1.7671562
|
||
|
||
Scale fixed at 1
|
||
|
||
Loglik(model)= -101.6 Loglik(intercept only)= -116.8
|
||
Chisq= 30.27 on 21 degrees of freedom, p= 0.0866
|
||
n= 42
|
||
> summary(survreg(Surv(time, cens) ~ treat, gehan, dist = "exponential"))
|
||
|
||
Call:
|
||
survreg(formula = Surv(time, cens) ~ treat, data = gehan, dist = "exponential")
|
||
Value Std. Error z p
|
||
(Intercept) 3.686 0.333 11.06 < 2e-16
|
||
treatcontrol -1.527 0.398 -3.83 0.00013
|
||
|
||
Scale fixed at 1
|
||
|
||
Exponential distribution
|
||
Loglik(model)= -108.5 Loglik(intercept only)= -116.8
|
||
Chisq= 16.49 on 1 degrees of freedom, p= 4.9e-05
|
||
Number of Newton-Raphson Iterations: 4
|
||
n= 42
|
||
|
||
> summary(survreg(Surv(time, cens) ~ treat, gehan))
|
||
|
||
Call:
|
||
survreg(formula = Surv(time, cens) ~ treat, data = gehan)
|
||
Value Std. Error z p
|
||
(Intercept) 3.516 0.252 13.96 < 2e-16
|
||
treatcontrol -1.267 0.311 -4.08 4.5e-05
|
||
Log(scale) -0.312 0.147 -2.12 0.034
|
||
|
||
Scale= 0.732
|
||
|
||
Weibull distribution
|
||
Loglik(model)= -106.6 Loglik(intercept only)= -116.4
|
||
Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06
|
||
Number of Newton-Raphson Iterations: 5
|
||
n= 42
|
||
|
||
> gehan.cox <- coxph(Surv(time, cens) ~ treat, gehan)
|
||
> summary(gehan.cox)
|
||
Call:
|
||
coxph(formula = Surv(time, cens) ~ treat, data = gehan)
|
||
|
||
n= 42, number of events= 30
|
||
|
||
coef exp(coef) se(coef) z Pr(>|z|)
|
||
treatcontrol 1.5721 4.8169 0.4124 3.812 0.000138 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
exp(coef) exp(-coef) lower .95 upper .95
|
||
treatcontrol 4.817 0.2076 2.147 10.81
|
||
|
||
Concordance= 0.69 (se = 0.041 )
|
||
Likelihood ratio test= 16.35 on 1 df, p=5e-05
|
||
Wald test = 14.53 on 1 df, p=1e-04
|
||
Score (logrank) test = 17.25 on 1 df, p=3e-05
|
||
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
|
||
detaching ‘package:survival’
|
||
|
||
> nameEx("glm.convert")
|
||
> ### * glm.convert
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: glm.convert
|
||
> ### Title: Change a Negative Binomial fit to a GLM fit
|
||
> ### Aliases: glm.convert
|
||
> ### Keywords: regression models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> quine.nb1 <- glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine)
|
||
> quine.nbA <- glm.convert(quine.nb1)
|
||
> quine.nbB <- update(quine.nb1, . ~ . + Sex:Age:Lrn)
|
||
> anova(quine.nbA, quine.nbB)
|
||
Analysis of Deviance Table
|
||
|
||
Model 1: Days ~ Sex/(Age + Eth * Lrn)
|
||
Model 2: Days ~ Sex + Sex:Age + Sex:Eth + Sex:Lrn + Sex:Eth:Lrn + Sex:Age:Lrn
|
||
Resid. Df Resid. Dev Df Deviance
|
||
1 132 167.56
|
||
2 128 166.83 4 0.723
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("glm.nb")
|
||
> ### * glm.nb
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: glm.nb
|
||
> ### Title: Fit a Negative Binomial Generalized Linear Model
|
||
> ### Aliases: glm.nb family.negbin logLik.negbin
|
||
> ### Keywords: regression models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> quine.nb1 <- glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine)
|
||
> quine.nb2 <- update(quine.nb1, . ~ . + Sex:Age:Lrn)
|
||
> quine.nb3 <- update(quine.nb2, Days ~ .^4)
|
||
> anova(quine.nb1, quine.nb2, quine.nb3)
|
||
Likelihood ratio tests of Negative Binomial Models
|
||
|
||
Response: Days
|
||
Model
|
||
1 Sex/(Age + Eth * Lrn)
|
||
2 Sex + Sex:Age + Sex:Eth + Sex:Lrn + Sex:Eth:Lrn + Sex:Age:Lrn
|
||
3 Sex + Sex:Age + Sex:Eth + Sex:Lrn + Sex:Eth:Lrn + Sex:Age:Lrn + Sex:Age:Eth + Sex:Age:Eth:Lrn
|
||
theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi)
|
||
1 1.597991 132 -1063.025
|
||
2 1.686899 128 -1055.398 1 vs 2 4 7.627279 0.10622602
|
||
3 1.928360 118 -1039.324 2 vs 3 10 16.073723 0.09754136
|
||
> ## Don't show:
|
||
> ## PR#1695
|
||
> y <- c(7, 5, 4, 7, 5, 2, 11, 5, 5, 4, 2, 3, 4, 3, 5, 9, 6, 7, 10, 6, 12,
|
||
+ 6, 3, 5, 3, 9, 13, 0, 6, 1, 2, 0, 1, 0, 0, 4, 5, 1, 5, 3, 3, 4)
|
||
>
|
||
> lag1 <- c(0, 7, 5, 4, 7, 5, 2, 11, 5, 5, 4, 2, 3, 4, 3, 5, 9, 6, 7, 10,
|
||
+ 6, 12, 6, 3, 5, 3, 9, 13, 0, 6, 1, 2, 0, 1, 0, 0, 4, 5, 1, 5, 3, 3)
|
||
>
|
||
> lag2 <- c(0, 0, 7, 5, 4, 7, 5, 2, 11, 5, 5, 4, 2, 3, 4, 3, 5, 9, 6, 7,
|
||
+ 10, 6, 12, 6, 3, 5, 3, 9, 13, 0, 6, 1, 2, 0, 1, 0, 0, 4, 5, 1, 5, 3)
|
||
>
|
||
> lag3 <- c(0, 0, 0, 7, 5, 4, 7, 5, 2, 11, 5, 5, 4, 2, 3, 4, 3, 5, 9, 6,
|
||
+ 7, 10, 6, 12, 6, 3, 5, 3, 9, 13, 0, 6, 1, 2, 0, 1, 0, 0, 4, 5, 1, 5)
|
||
>
|
||
> (fit <- glm(y ~ lag1+lag2+lag3, family=poisson(link=identity),
|
||
+ start=c(2, 0.1, 0.1, 0.1)))
|
||
|
||
Call: glm(formula = y ~ lag1 + lag2 + lag3, family = poisson(link = identity),
|
||
start = c(2, 0.1, 0.1, 0.1))
|
||
|
||
Coefficients:
|
||
(Intercept) lag1 lag2 lag3
|
||
2.6609 0.1573 0.1424 0.1458
|
||
|
||
Degrees of Freedom: 41 Total (i.e. Null); 38 Residual
|
||
Null Deviance: 100.2
|
||
Residual Deviance: 90.34 AIC: 225.6
|
||
> try(glm.nb(y ~ lag1+lag2+lag3, link=identity))
|
||
Warning in log(y/mu) : NaNs produced
|
||
Error : no valid set of coefficients has been found: please supply starting values
|
||
> glm.nb(y ~ lag1+lag2+lag3, link=identity, start=c(2, 0.1, 0.1, 0.1))
|
||
|
||
Call: glm.nb(formula = y ~ lag1 + lag2 + lag3, start = c(2, 0.1, 0.1,
|
||
0.1), link = identity, init.theta = 4.406504429)
|
||
|
||
Coefficients:
|
||
(Intercept) lag1 lag2 lag3
|
||
2.6298 0.1774 0.1407 0.1346
|
||
|
||
Degrees of Freedom: 41 Total (i.e. Null); 38 Residual
|
||
Null Deviance: 55.07
|
||
Residual Deviance: 50.09 AIC: 215.9
|
||
> glm.nb(y ~ lag1+lag2+lag3, link=identity, start=coef(fit))
|
||
|
||
Call: glm.nb(formula = y ~ lag1 + lag2 + lag3, start = coef(fit), link = identity,
|
||
init.theta = 4.406504429)
|
||
|
||
Coefficients:
|
||
(Intercept) lag1 lag2 lag3
|
||
2.6298 0.1774 0.1407 0.1346
|
||
|
||
Degrees of Freedom: 41 Total (i.e. Null); 38 Residual
|
||
Null Deviance: 55.07
|
||
Residual Deviance: 50.09 AIC: 215.9
|
||
> glm.nb(y ~ lag1+lag2+lag3, link=identity, etastart=rep(5, 42))
|
||
|
||
Call: glm.nb(formula = y ~ lag1 + lag2 + lag3, etastart = rep(5, 42),
|
||
link = identity, init.theta = 4.406504429)
|
||
|
||
Coefficients:
|
||
(Intercept) lag1 lag2 lag3
|
||
2.6298 0.1774 0.1407 0.1346
|
||
|
||
Degrees of Freedom: 41 Total (i.e. Null); 38 Residual
|
||
Null Deviance: 55.07
|
||
Residual Deviance: 50.09 AIC: 215.9
|
||
> ## End(Don't show)
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("glmmPQL")
|
||
> ### * glmmPQL
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: glmmPQL
|
||
> ### Title: Fit Generalized Linear Mixed Models via PQL
|
||
> ### Aliases: glmmPQL
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> summary(glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
|
||
+ family = binomial, data = bacteria))
|
||
iteration 1
|
||
iteration 2
|
||
iteration 3
|
||
iteration 4
|
||
iteration 5
|
||
iteration 6
|
||
Linear mixed-effects model fit by maximum likelihood
|
||
Data: bacteria
|
||
AIC BIC logLik
|
||
NA NA NA
|
||
|
||
Random effects:
|
||
Formula: ~1 | ID
|
||
(Intercept) Residual
|
||
StdDev: 1.410637 0.7800511
|
||
|
||
Variance function:
|
||
Structure: fixed weights
|
||
Formula: ~invwt
|
||
Fixed effects: y ~ trt + I(week > 2)
|
||
Value Std.Error DF t-value p-value
|
||
(Intercept) 3.412014 0.5185033 169 6.580506 0.0000
|
||
trtdrug -1.247355 0.6440635 47 -1.936696 0.0588
|
||
trtdrug+ -0.754327 0.6453978 47 -1.168779 0.2484
|
||
I(week > 2)TRUE -1.607257 0.3583379 169 -4.485311 0.0000
|
||
Correlation:
|
||
(Intr) trtdrg trtdr+
|
||
trtdrug -0.598
|
||
trtdrug+ -0.571 0.460
|
||
I(week > 2)TRUE -0.537 0.047 -0.001
|
||
|
||
Standardized Within-Group Residuals:
|
||
Min Q1 Med Q3 Max
|
||
-5.1985361 0.1572336 0.3513075 0.4949482 1.7448845
|
||
|
||
Number of Observations: 220
|
||
Number of Groups: 50
|
||
>
|
||
> ## an example of an offset: the coefficient of 'week' changes by one.
|
||
> summary(glmmPQL(y ~ trt + week, random = ~ 1 | ID,
|
||
+ family = binomial, data = bacteria))
|
||
iteration 1
|
||
iteration 2
|
||
iteration 3
|
||
iteration 4
|
||
iteration 5
|
||
iteration 6
|
||
Linear mixed-effects model fit by maximum likelihood
|
||
Data: bacteria
|
||
AIC BIC logLik
|
||
NA NA NA
|
||
|
||
Random effects:
|
||
Formula: ~1 | ID
|
||
(Intercept) Residual
|
||
StdDev: 1.325243 0.7903088
|
||
|
||
Variance function:
|
||
Structure: fixed weights
|
||
Formula: ~invwt
|
||
Fixed effects: y ~ trt + week
|
||
Value Std.Error DF t-value p-value
|
||
(Intercept) 3.0302276 0.4791396 169 6.324310 0.0000
|
||
trtdrug -1.2176812 0.6160113 47 -1.976719 0.0540
|
||
trtdrug+ -0.7886376 0.6193895 47 -1.273250 0.2092
|
||
week -0.1446463 0.0392343 169 -3.686730 0.0003
|
||
Correlation:
|
||
(Intr) trtdrg trtdr+
|
||
trtdrug -0.622
|
||
trtdrug+ -0.609 0.464
|
||
week -0.481 0.050 0.030
|
||
|
||
Standardized Within-Group Residuals:
|
||
Min Q1 Med Q3 Max
|
||
-4.2868074 0.2039043 0.3140333 0.5440835 1.9754065
|
||
|
||
Number of Observations: 220
|
||
Number of Groups: 50
|
||
> summary(glmmPQL(y ~ trt + week + offset(week), random = ~ 1 | ID,
|
||
+ family = binomial, data = bacteria))
|
||
iteration 1
|
||
iteration 2
|
||
iteration 3
|
||
iteration 4
|
||
iteration 5
|
||
iteration 6
|
||
Linear mixed-effects model fit by maximum likelihood
|
||
Data: bacteria
|
||
AIC BIC logLik
|
||
NA NA NA
|
||
|
||
Random effects:
|
||
Formula: ~1 | ID
|
||
(Intercept) Residual
|
||
StdDev: 1.325243 0.7903088
|
||
|
||
Variance function:
|
||
Structure: fixed weights
|
||
Formula: ~invwt
|
||
Fixed effects: y ~ trt + week + offset(week)
|
||
Value Std.Error DF t-value p-value
|
||
(Intercept) 3.0302276 0.4791396 169 6.324310 0.0000
|
||
trtdrug -1.2176812 0.6160113 47 -1.976719 0.0540
|
||
trtdrug+ -0.7886376 0.6193895 47 -1.273250 0.2092
|
||
week -1.1446463 0.0392343 169 -29.174622 0.0000
|
||
Correlation:
|
||
(Intr) trtdrg trtdr+
|
||
trtdrug -0.622
|
||
trtdrug+ -0.609 0.464
|
||
week -0.481 0.050 0.030
|
||
|
||
Standardized Within-Group Residuals:
|
||
Min Q1 Med Q3 Max
|
||
-4.2868074 0.2039043 0.3140333 0.5440835 1.9754065
|
||
|
||
Number of Observations: 220
|
||
Number of Groups: 50
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("housing")
|
||
> ### * housing
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: housing
|
||
> ### Title: Frequency Table from a Copenhagen Housing Conditions Survey
|
||
> ### Aliases: housing
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> options(contrasts = c("contr.treatment", "contr.poly"))
|
||
>
|
||
> # Surrogate Poisson models
|
||
> house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family = poisson,
|
||
+ data = housing)
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(house.glm0, correlation = FALSE)
|
||
|
||
Call:
|
||
glm(formula = Freq ~ Infl * Type * Cont + Sat, family = poisson,
|
||
data = housing)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 3.136e+00 1.196e-01 26.225 < 2e-16 ***
|
||
InflMedium 2.733e-01 1.586e-01 1.723 0.084868 .
|
||
InflHigh -2.054e-01 1.784e-01 -1.152 0.249511
|
||
TypeApartment 3.666e-01 1.555e-01 2.357 0.018403 *
|
||
TypeAtrium -7.828e-01 2.134e-01 -3.668 0.000244 ***
|
||
TypeTerrace -8.145e-01 2.157e-01 -3.775 0.000160 ***
|
||
ContHigh 1.402e-15 1.690e-01 0.000 1.000000
|
||
Sat.L 1.159e-01 4.038e-02 2.871 0.004094 **
|
||
Sat.Q 2.629e-01 4.515e-02 5.824 5.76e-09 ***
|
||
InflMedium:TypeApartment -1.177e-01 2.086e-01 -0.564 0.572571
|
||
InflHigh:TypeApartment 1.753e-01 2.279e-01 0.769 0.441783
|
||
InflMedium:TypeAtrium -4.068e-01 3.035e-01 -1.340 0.180118
|
||
InflHigh:TypeAtrium -1.692e-01 3.294e-01 -0.514 0.607433
|
||
InflMedium:TypeTerrace 6.292e-03 2.860e-01 0.022 0.982450
|
||
InflHigh:TypeTerrace -9.305e-02 3.280e-01 -0.284 0.776633
|
||
InflMedium:ContHigh -1.398e-01 2.279e-01 -0.613 0.539715
|
||
InflHigh:ContHigh -6.091e-01 2.800e-01 -2.176 0.029585 *
|
||
TypeApartment:ContHigh 5.029e-01 2.109e-01 2.385 0.017083 *
|
||
TypeAtrium:ContHigh 6.774e-01 2.751e-01 2.462 0.013811 *
|
||
TypeTerrace:ContHigh 1.099e+00 2.675e-01 4.106 4.02e-05 ***
|
||
InflMedium:TypeApartment:ContHigh 5.359e-02 2.862e-01 0.187 0.851450
|
||
InflHigh:TypeApartment:ContHigh 1.462e-01 3.380e-01 0.432 0.665390
|
||
InflMedium:TypeAtrium:ContHigh 1.555e-01 3.907e-01 0.398 0.690597
|
||
InflHigh:TypeAtrium:ContHigh 4.782e-01 4.441e-01 1.077 0.281619
|
||
InflMedium:TypeTerrace:ContHigh -4.980e-01 3.671e-01 -1.357 0.174827
|
||
InflHigh:TypeTerrace:ContHigh -4.470e-01 4.545e-01 -0.984 0.325326
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for poisson family taken to be 1)
|
||
|
||
Null deviance: 833.66 on 71 degrees of freedom
|
||
Residual deviance: 217.46 on 46 degrees of freedom
|
||
AIC: 610.43
|
||
|
||
Number of Fisher Scoring iterations: 5
|
||
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
> addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test = "Chisq")
|
||
Single term additions
|
||
|
||
Model:
|
||
Freq ~ Infl * Type * Cont + Sat
|
||
Df Deviance AIC LRT Pr(Chi)
|
||
<none> 217.46 610.43
|
||
Infl:Sat 4 111.08 512.05 106.371 < 2.2e-16 ***
|
||
Type:Sat 6 156.79 561.76 60.669 3.292e-11 ***
|
||
Cont:Sat 2 212.33 609.30 5.126 0.07708 .
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
> house.glm1 <- update(house.glm0, . ~ . + Sat*(Infl+Type+Cont))
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(house.glm1, correlation = FALSE)
|
||
|
||
Call:
|
||
glm(formula = Freq ~ Infl + Type + Cont + Sat + Infl:Type + Infl:Cont +
|
||
Type:Cont + Infl:Sat + Type:Sat + Cont:Sat + Infl:Type:Cont,
|
||
family = poisson, data = housing)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 3.135074 0.120112 26.101 < 2e-16 ***
|
||
InflMedium 0.248327 0.159979 1.552 0.120602
|
||
InflHigh -0.412645 0.184947 -2.231 0.025671 *
|
||
TypeApartment 0.292524 0.157477 1.858 0.063231 .
|
||
TypeAtrium -0.792847 0.214413 -3.698 0.000218 ***
|
||
TypeTerrace -1.018074 0.221263 -4.601 4.20e-06 ***
|
||
ContHigh -0.001407 0.169711 -0.008 0.993385
|
||
Sat.L -0.098106 0.112592 -0.871 0.383570
|
||
Sat.Q 0.285657 0.122283 2.336 0.019489 *
|
||
InflMedium:TypeApartment -0.017882 0.210496 -0.085 0.932302
|
||
InflHigh:TypeApartment 0.386869 0.233297 1.658 0.097263 .
|
||
InflMedium:TypeAtrium -0.360311 0.304979 -1.181 0.237432
|
||
InflHigh:TypeAtrium -0.036788 0.334793 -0.110 0.912503
|
||
InflMedium:TypeTerrace 0.185154 0.288892 0.641 0.521580
|
||
InflHigh:TypeTerrace 0.310749 0.334815 0.928 0.353345
|
||
InflMedium:ContHigh -0.200060 0.228748 -0.875 0.381799
|
||
InflHigh:ContHigh -0.725790 0.282352 -2.571 0.010155 *
|
||
TypeApartment:ContHigh 0.569691 0.212152 2.685 0.007247 **
|
||
TypeAtrium:ContHigh 0.702115 0.276056 2.543 0.010979 *
|
||
TypeTerrace:ContHigh 1.215930 0.269968 4.504 6.67e-06 ***
|
||
InflMedium:Sat.L 0.519627 0.096830 5.366 8.03e-08 ***
|
||
InflHigh:Sat.L 1.140302 0.118180 9.649 < 2e-16 ***
|
||
InflMedium:Sat.Q -0.064474 0.102666 -0.628 0.530004
|
||
InflHigh:Sat.Q 0.115436 0.127798 0.903 0.366380
|
||
TypeApartment:Sat.L -0.520170 0.109793 -4.738 2.16e-06 ***
|
||
TypeAtrium:Sat.L -0.288484 0.149551 -1.929 0.053730 .
|
||
TypeTerrace:Sat.L -0.998666 0.141527 -7.056 1.71e-12 ***
|
||
TypeApartment:Sat.Q 0.055418 0.118515 0.468 0.640068
|
||
TypeAtrium:Sat.Q -0.273820 0.149713 -1.829 0.067405 .
|
||
TypeTerrace:Sat.Q -0.032328 0.149251 -0.217 0.828520
|
||
ContHigh:Sat.L 0.340703 0.087778 3.881 0.000104 ***
|
||
ContHigh:Sat.Q -0.097929 0.094068 -1.041 0.297851
|
||
InflMedium:TypeApartment:ContHigh 0.046900 0.286212 0.164 0.869837
|
||
InflHigh:TypeApartment:ContHigh 0.126229 0.338208 0.373 0.708979
|
||
InflMedium:TypeAtrium:ContHigh 0.157239 0.390719 0.402 0.687364
|
||
InflHigh:TypeAtrium:ContHigh 0.478611 0.444244 1.077 0.281320
|
||
InflMedium:TypeTerrace:ContHigh -0.500162 0.367135 -1.362 0.173091
|
||
InflHigh:TypeTerrace:ContHigh -0.463099 0.454713 -1.018 0.308467
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for poisson family taken to be 1)
|
||
|
||
Null deviance: 833.657 on 71 degrees of freedom
|
||
Residual deviance: 38.662 on 34 degrees of freedom
|
||
AIC: 455.63
|
||
|
||
Number of Fisher Scoring iterations: 4
|
||
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
> 1 - pchisq(deviance(house.glm1), house.glm1$df.residual)
|
||
[1] 0.2671363
|
||
>
|
||
> dropterm(house.glm1, test = "Chisq")
|
||
Single term deletions
|
||
|
||
Model:
|
||
Freq ~ Infl + Type + Cont + Sat + Infl:Type + Infl:Cont + Type:Cont +
|
||
Infl:Sat + Type:Sat + Cont:Sat + Infl:Type:Cont
|
||
Df Deviance AIC LRT Pr(Chi)
|
||
<none> 38.662 455.63
|
||
Infl:Sat 4 147.780 556.75 109.117 < 2.2e-16 ***
|
||
Type:Sat 6 100.889 505.86 62.227 1.586e-11 ***
|
||
Cont:Sat 2 54.722 467.69 16.060 0.0003256 ***
|
||
Infl:Type:Cont 6 43.952 448.92 5.290 0.5072454
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
> addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test = "Chisq")
|
||
Single term additions
|
||
|
||
Model:
|
||
Freq ~ Infl + Type + Cont + Sat + Infl:Type + Infl:Cont + Type:Cont +
|
||
Infl:Sat + Type:Sat + Cont:Sat + Infl:Type:Cont
|
||
Df Deviance AIC LRT Pr(Chi)
|
||
<none> 38.662 455.63
|
||
Infl:Type:Sat 12 16.107 457.08 22.5550 0.03175 *
|
||
Infl:Cont:Sat 4 37.472 462.44 1.1901 0.87973
|
||
Type:Cont:Sat 6 28.256 457.23 10.4064 0.10855
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
>
|
||
> hnames <- lapply(housing[, -5], levels) # omit Freq
|
||
> newData <- expand.grid(hnames)
|
||
> newData$Sat <- ordered(newData$Sat)
|
||
> house.pm <- predict(house.glm1, newData,
|
||
+ type = "response") # poisson means
|
||
> house.pm <- matrix(house.pm, ncol = 3, byrow = TRUE,
|
||
+ dimnames = list(NULL, hnames[[1]]))
|
||
> house.pr <- house.pm/drop(house.pm %*% rep(1, 3))
|
||
> cbind(expand.grid(hnames[-1]), round(house.pr, 2))
|
||
Infl Type Cont Low Medium High
|
||
1 Low Tower Low 0.40 0.26 0.34
|
||
2 Medium Tower Low 0.26 0.27 0.47
|
||
3 High Tower Low 0.15 0.19 0.66
|
||
4 Low Apartment Low 0.54 0.23 0.23
|
||
5 Medium Apartment Low 0.39 0.26 0.34
|
||
6 High Apartment Low 0.26 0.21 0.53
|
||
7 Low Atrium Low 0.43 0.32 0.25
|
||
8 Medium Atrium Low 0.30 0.35 0.36
|
||
9 High Atrium Low 0.19 0.27 0.54
|
||
10 Low Terrace Low 0.65 0.22 0.14
|
||
11 Medium Terrace Low 0.51 0.27 0.22
|
||
12 High Terrace Low 0.37 0.24 0.39
|
||
13 Low Tower High 0.30 0.28 0.42
|
||
14 Medium Tower High 0.18 0.27 0.54
|
||
15 High Tower High 0.10 0.19 0.71
|
||
16 Low Apartment High 0.44 0.27 0.30
|
||
17 Medium Apartment High 0.30 0.28 0.42
|
||
18 High Apartment High 0.18 0.21 0.61
|
||
19 Low Atrium High 0.33 0.36 0.31
|
||
20 Medium Atrium High 0.22 0.36 0.42
|
||
21 High Atrium High 0.13 0.27 0.60
|
||
22 Low Terrace High 0.55 0.27 0.19
|
||
23 Medium Terrace High 0.40 0.31 0.29
|
||
24 High Terrace High 0.27 0.26 0.47
|
||
>
|
||
> # Iterative proportional scaling
|
||
> loglm(Freq ~ Infl*Type*Cont + Sat*(Infl+Type+Cont), data = housing)
|
||
Call:
|
||
loglm(formula = Freq ~ Infl * Type * Cont + Sat * (Infl + Type +
|
||
Cont), data = housing)
|
||
|
||
Statistics:
|
||
X^2 df P(> X^2)
|
||
Likelihood Ratio 38.66222 34 0.2671359
|
||
Pearson 38.90831 34 0.2582333
|
||
>
|
||
>
|
||
> # multinomial model
|
||
> library(nnet)
|
||
> (house.mult<- multinom(Sat ~ Infl + Type + Cont, weights = Freq,
|
||
+ data = housing))
|
||
# weights: 24 (14 variable)
|
||
initial value 1846.767257
|
||
iter 10 value 1747.045232
|
||
final value 1735.041933
|
||
converged
|
||
Call:
|
||
multinom(formula = Sat ~ Infl + Type + Cont, data = housing,
|
||
weights = Freq)
|
||
|
||
Coefficients:
|
||
(Intercept) InflMedium InflHigh TypeApartment TypeAtrium TypeTerrace
|
||
Medium -0.4192316 0.4464003 0.6649367 -0.4356851 0.1313663 -0.6665728
|
||
High -0.1387453 0.7348626 1.6126294 -0.7356261 -0.4079808 -1.4123333
|
||
ContHigh
|
||
Medium 0.3608513
|
||
High 0.4818236
|
||
|
||
Residual Deviance: 3470.084
|
||
AIC: 3498.084
|
||
> house.mult2 <- multinom(Sat ~ Infl*Type*Cont, weights = Freq,
|
||
+ data = housing)
|
||
# weights: 75 (48 variable)
|
||
initial value 1846.767257
|
||
iter 10 value 1734.465581
|
||
iter 20 value 1717.220153
|
||
iter 30 value 1715.760679
|
||
iter 40 value 1715.713306
|
||
final value 1715.710836
|
||
converged
|
||
> anova(house.mult, house.mult2)
|
||
Likelihood ratio tests of Multinomial Models
|
||
|
||
Response: Sat
|
||
Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)
|
||
1 Infl + Type + Cont 130 3470.084
|
||
2 Infl * Type * Cont 96 3431.422 1 vs 2 34 38.66219 0.2671367
|
||
>
|
||
> house.pm <- predict(house.mult, expand.grid(hnames[-1]), type = "probs")
|
||
> cbind(expand.grid(hnames[-1]), round(house.pm, 2))
|
||
Infl Type Cont Low Medium High
|
||
1 Low Tower Low 0.40 0.26 0.34
|
||
2 Medium Tower Low 0.26 0.27 0.47
|
||
3 High Tower Low 0.15 0.19 0.66
|
||
4 Low Apartment Low 0.54 0.23 0.23
|
||
5 Medium Apartment Low 0.39 0.26 0.34
|
||
6 High Apartment Low 0.26 0.21 0.53
|
||
7 Low Atrium Low 0.43 0.32 0.25
|
||
8 Medium Atrium Low 0.30 0.35 0.36
|
||
9 High Atrium Low 0.19 0.27 0.54
|
||
10 Low Terrace Low 0.65 0.22 0.14
|
||
11 Medium Terrace Low 0.51 0.27 0.22
|
||
12 High Terrace Low 0.37 0.24 0.39
|
||
13 Low Tower High 0.30 0.28 0.42
|
||
14 Medium Tower High 0.18 0.27 0.54
|
||
15 High Tower High 0.10 0.19 0.71
|
||
16 Low Apartment High 0.44 0.27 0.30
|
||
17 Medium Apartment High 0.30 0.28 0.42
|
||
18 High Apartment High 0.18 0.21 0.61
|
||
19 Low Atrium High 0.33 0.36 0.31
|
||
20 Medium Atrium High 0.22 0.36 0.42
|
||
21 High Atrium High 0.13 0.27 0.60
|
||
22 Low Terrace High 0.55 0.27 0.19
|
||
23 Medium Terrace High 0.40 0.31 0.29
|
||
24 High Terrace High 0.27 0.26 0.47
|
||
>
|
||
> # proportional odds model
|
||
> house.cpr <- apply(house.pr, 1, cumsum)
|
||
> logit <- function(x) log(x/(1-x))
|
||
> house.ld <- logit(house.cpr[2, ]) - logit(house.cpr[1, ])
|
||
> (ratio <- sort(drop(house.ld)))
|
||
[1] 0.9357341 0.9854433 1.0573182 1.0680491 1.0772649 1.0803574 1.0824895
|
||
[8] 1.0998759 1.1199975 1.1554228 1.1768138 1.1866427 1.2091541 1.2435026
|
||
[15] 1.2724096 1.2750171 1.2849903 1.3062598 1.3123988 1.3904715 1.4540087
|
||
[22] 1.4947753 1.4967585 1.6068789
|
||
> mean(ratio)
|
||
[1] 1.223835
|
||
>
|
||
> (house.plr <- polr(Sat ~ Infl + Type + Cont,
|
||
+ data = housing, weights = Freq))
|
||
Call:
|
||
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq)
|
||
|
||
Coefficients:
|
||
InflMedium InflHigh TypeApartment TypeAtrium TypeTerrace
|
||
0.5663937 1.2888191 -0.5723501 -0.3661866 -1.0910149
|
||
ContHigh
|
||
0.3602841
|
||
|
||
Intercepts:
|
||
Low|Medium Medium|High
|
||
-0.4961353 0.6907083
|
||
|
||
Residual Deviance: 3479.149
|
||
AIC: 3495.149
|
||
>
|
||
> house.pr1 <- predict(house.plr, expand.grid(hnames[-1]), type = "probs")
|
||
> cbind(expand.grid(hnames[-1]), round(house.pr1, 2))
|
||
Infl Type Cont Low Medium High
|
||
1 Low Tower Low 0.38 0.29 0.33
|
||
2 Medium Tower Low 0.26 0.27 0.47
|
||
3 High Tower Low 0.14 0.21 0.65
|
||
4 Low Apartment Low 0.52 0.26 0.22
|
||
5 Medium Apartment Low 0.38 0.29 0.33
|
||
6 High Apartment Low 0.23 0.26 0.51
|
||
7 Low Atrium Low 0.47 0.27 0.26
|
||
8 Medium Atrium Low 0.33 0.29 0.38
|
||
9 High Atrium Low 0.19 0.25 0.56
|
||
10 Low Terrace Low 0.64 0.21 0.14
|
||
11 Medium Terrace Low 0.51 0.26 0.23
|
||
12 High Terrace Low 0.33 0.29 0.38
|
||
13 Low Tower High 0.30 0.28 0.42
|
||
14 Medium Tower High 0.19 0.25 0.56
|
||
15 High Tower High 0.10 0.17 0.72
|
||
16 Low Apartment High 0.43 0.28 0.29
|
||
17 Medium Apartment High 0.30 0.28 0.42
|
||
18 High Apartment High 0.17 0.23 0.60
|
||
19 Low Atrium High 0.38 0.29 0.33
|
||
20 Medium Atrium High 0.26 0.27 0.47
|
||
21 High Atrium High 0.14 0.21 0.64
|
||
22 Low Terrace High 0.56 0.25 0.19
|
||
23 Medium Terrace High 0.42 0.28 0.30
|
||
24 High Terrace High 0.26 0.27 0.47
|
||
>
|
||
> Fr <- matrix(housing$Freq, ncol = 3, byrow = TRUE)
|
||
> 2*sum(Fr*log(house.pr/house.pr1))
|
||
[1] 9.065433
|
||
>
|
||
> house.plr2 <- stepAIC(house.plr, ~.^2)
|
||
Start: AIC=3495.15
|
||
Sat ~ Infl + Type + Cont
|
||
|
||
Df AIC
|
||
+ Infl:Type 6 3484.6
|
||
+ Type:Cont 3 3492.5
|
||
<none> 3495.1
|
||
+ Infl:Cont 2 3498.9
|
||
- Cont 1 3507.5
|
||
- Type 3 3545.1
|
||
- Infl 2 3599.4
|
||
|
||
Step: AIC=3484.64
|
||
Sat ~ Infl + Type + Cont + Infl:Type
|
||
|
||
Df AIC
|
||
+ Type:Cont 3 3482.7
|
||
<none> 3484.6
|
||
+ Infl:Cont 2 3488.5
|
||
- Infl:Type 6 3495.1
|
||
- Cont 1 3497.8
|
||
|
||
Step: AIC=3482.69
|
||
Sat ~ Infl + Type + Cont + Infl:Type + Type:Cont
|
||
|
||
Df AIC
|
||
<none> 3482.7
|
||
- Type:Cont 3 3484.6
|
||
+ Infl:Cont 2 3486.6
|
||
- Infl:Type 6 3492.5
|
||
> house.plr2$anova
|
||
Stepwise Model Path
|
||
Analysis of Deviance Table
|
||
|
||
Initial Model:
|
||
Sat ~ Infl + Type + Cont
|
||
|
||
Final Model:
|
||
Sat ~ Infl + Type + Cont + Infl:Type + Type:Cont
|
||
|
||
|
||
Step Df Deviance Resid. Df Resid. Dev AIC
|
||
1 1673 3479.149 3495.149
|
||
2 + Infl:Type 6 22.509347 1667 3456.640 3484.640
|
||
3 + Type:Cont 3 7.945029 1664 3448.695 3482.695
|
||
>
|
||
>
|
||
>
|
||
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
|
||
> cleanEx()
|
||
|
||
detaching ‘package:nnet’
|
||
|
||
> nameEx("huber")
|
||
> ### * huber
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: huber
|
||
> ### Title: Huber M-estimator of Location with MAD Scale
|
||
> ### Aliases: huber
|
||
> ### Keywords: robust
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> huber(chem)
|
||
$mu
|
||
[1] 3.206724
|
||
|
||
$s
|
||
[1] 0.526323
|
||
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("hubers")
|
||
> ### * hubers
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: hubers
|
||
> ### Title: Huber Proposal 2 Robust Estimator of Location and/or Scale
|
||
> ### Aliases: hubers
|
||
> ### Keywords: robust
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> hubers(chem)
|
||
$mu
|
||
[1] 3.205498
|
||
|
||
$s
|
||
[1] 0.673652
|
||
|
||
> hubers(chem, mu=3.68)
|
||
$mu
|
||
[1] 3.68
|
||
|
||
$s
|
||
[1] 0.9409628
|
||
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("immer")
|
||
> ### * immer
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: immer
|
||
> ### Title: Yields from a Barley Field Trial
|
||
> ### Aliases: immer
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> immer.aov <- aov(cbind(Y1,Y2) ~ Loc + Var, data = immer)
|
||
> summary(immer.aov)
|
||
Response Y1 :
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
Loc 5 17829.8 3566.0 21.8923 1.751e-07 ***
|
||
Var 4 2756.6 689.2 4.2309 0.01214 *
|
||
Residuals 20 3257.7 162.9
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Response Y2 :
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
Loc 5 10285.0 2056.99 10.3901 5.049e-05 ***
|
||
Var 4 2845.2 711.29 3.5928 0.02306 *
|
||
Residuals 20 3959.5 197.98
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
>
|
||
> immer.aov <- aov((Y1+Y2)/2 ~ Var + Loc, data = immer)
|
||
> summary(immer.aov)
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
Var 4 2655 663.7 5.989 0.00245 **
|
||
Loc 5 10610 2122.1 19.148 5.21e-07 ***
|
||
Residuals 20 2217 110.8
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> model.tables(immer.aov, type = "means", se = TRUE, cterms = "Var")
|
||
Tables of means
|
||
Grand mean
|
||
|
||
101.09
|
||
|
||
Var
|
||
Var
|
||
M P S T V
|
||
94.39 102.54 91.13 118.20 99.18
|
||
|
||
Standard errors for differences of means
|
||
Var
|
||
6.078
|
||
replic. 6
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("isoMDS")
|
||
> ### * isoMDS
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: isoMDS
|
||
> ### Title: Kruskal's Non-metric Multidimensional Scaling
|
||
> ### Aliases: isoMDS Shepard
|
||
> ### Keywords: multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> swiss.x <- as.matrix(swiss[, -1])
|
||
> swiss.dist <- dist(swiss.x)
|
||
> swiss.mds <- isoMDS(swiss.dist)
|
||
initial value 2.979731
|
||
iter 5 value 2.431486
|
||
iter 10 value 2.343353
|
||
final value 2.338839
|
||
converged
|
||
> plot(swiss.mds$points, type = "n")
|
||
> text(swiss.mds$points, labels = as.character(1:nrow(swiss.x)))
|
||
> swiss.sh <- Shepard(swiss.dist, swiss.mds$points)
|
||
> plot(swiss.sh, pch = ".")
|
||
> lines(swiss.sh$x, swiss.sh$yf, type = "S")
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("kde2d")
|
||
> ### * kde2d
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: kde2d
|
||
> ### Title: Two-Dimensional Kernel Density Estimation
|
||
> ### Aliases: kde2d
|
||
> ### Keywords: dplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> attach(geyser)
|
||
> plot(duration, waiting, xlim = c(0.5,6), ylim = c(40,100))
|
||
> f1 <- kde2d(duration, waiting, n = 50, lims = c(0.5, 6, 40, 100))
|
||
> image(f1, zlim = c(0, 0.05))
|
||
> f2 <- kde2d(duration, waiting, n = 50, lims = c(0.5, 6, 40, 100),
|
||
+ h = c(width.SJ(duration), width.SJ(waiting)) )
|
||
> image(f2, zlim = c(0, 0.05))
|
||
> persp(f2, phi = 30, theta = 20, d = 5)
|
||
>
|
||
> plot(duration[-272], duration[-1], xlim = c(0.5, 6),
|
||
+ ylim = c(1, 6),xlab = "previous duration", ylab = "duration")
|
||
> f1 <- kde2d(duration[-272], duration[-1],
|
||
+ h = rep(1.5, 2), n = 50, lims = c(0.5, 6, 0.5, 6))
|
||
> contour(f1, xlab = "previous duration",
|
||
+ ylab = "duration", levels = c(0.05, 0.1, 0.2, 0.4) )
|
||
> f1 <- kde2d(duration[-272], duration[-1],
|
||
+ h = rep(0.6, 2), n = 50, lims = c(0.5, 6, 0.5, 6))
|
||
> contour(f1, xlab = "previous duration",
|
||
+ ylab = "duration", levels = c(0.05, 0.1, 0.2, 0.4) )
|
||
> f1 <- kde2d(duration[-272], duration[-1],
|
||
+ h = rep(0.4, 2), n = 50, lims = c(0.5, 6, 0.5, 6))
|
||
> contour(f1, xlab = "previous duration",
|
||
+ ylab = "duration", levels = c(0.05, 0.1, 0.2, 0.4) )
|
||
> detach("geyser")
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("lda")
|
||
> ### * lda
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: lda
|
||
> ### Title: Linear Discriminant Analysis
|
||
> ### Aliases: lda lda.default lda.data.frame lda.formula lda.matrix
|
||
> ### model.frame.lda print.lda coef.lda
|
||
> ### Keywords: multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
|
||
+ Sp = rep(c("s","c","v"), rep(50,3)))
|
||
> train <- sample(1:150, 75)
|
||
> table(Iris$Sp[train])
|
||
|
||
c s v
|
||
20 28 27
|
||
> ## your answer may differ
|
||
> ## c s v
|
||
> ## 22 23 30
|
||
> z <- lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train)
|
||
> predict(z, Iris[-train, ])$class
|
||
[1] s s s s s s s s s s s s s s s s s s s s s s c c c c c c c c c c c c c c c v
|
||
[39] c c c c c c c c c c c c c c v v v v v v v v v v v v v v c v v v v v v v v
|
||
Levels: c s v
|
||
> ## [1] s s s s s s s s s s s s s s s s s s s s s s s s s s s c c c
|
||
> ## [31] c c c c c c c v c c c c v c c c c c c c c c c c c v v v v v
|
||
> ## [61] v v v v v v v v v v v v v v v
|
||
> (z1 <- update(z, . ~ . - Petal.W.))
|
||
Call:
|
||
lda(Sp ~ Sepal.L. + Sepal.W. + Petal.L., data = Iris, prior = c(1,
|
||
1, 1)/3, subset = train)
|
||
|
||
Prior probabilities of groups:
|
||
c s v
|
||
0.3333333 0.3333333 0.3333333
|
||
|
||
Group means:
|
||
Sepal.L. Sepal.W. Petal.L.
|
||
c 5.975000 2.810000 4.395000
|
||
s 4.978571 3.432143 1.460714
|
||
v 6.748148 2.988889 5.637037
|
||
|
||
Coefficients of linear discriminants:
|
||
LD1 LD2
|
||
Sepal.L. 1.1643015 0.68235619
|
||
Sepal.W. 0.7945307 2.23093702
|
||
Petal.L. -3.0421425 0.01236265
|
||
|
||
Proportion of trace:
|
||
LD1 LD2
|
||
0.9929 0.0071
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("leuk")
|
||
> ### * leuk
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: leuk
|
||
> ### Title: Survival Times and White Blood Counts for Leukaemia Patients
|
||
> ### Aliases: leuk
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> library(survival)
|
||
> plot(survfit(Surv(time) ~ ag, data = leuk), lty = 2:3, col = 2:3)
|
||
>
|
||
> # now Cox models
|
||
> leuk.cox <- coxph(Surv(time) ~ ag + log(wbc), leuk)
|
||
> summary(leuk.cox)
|
||
Call:
|
||
coxph(formula = Surv(time) ~ ag + log(wbc), data = leuk)
|
||
|
||
n= 33, number of events= 33
|
||
|
||
coef exp(coef) se(coef) z Pr(>|z|)
|
||
agpresent -1.0691 0.3433 0.4293 -2.490 0.01276 *
|
||
log(wbc) 0.3677 1.4444 0.1360 2.703 0.00687 **
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
exp(coef) exp(-coef) lower .95 upper .95
|
||
agpresent 0.3433 2.9126 0.148 0.7964
|
||
log(wbc) 1.4444 0.6923 1.106 1.8857
|
||
|
||
Concordance= 0.726 (se = 0.047 )
|
||
Likelihood ratio test= 15.64 on 2 df, p=4e-04
|
||
Wald test = 15.06 on 2 df, p=5e-04
|
||
Score (logrank) test = 16.49 on 2 df, p=3e-04
|
||
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
|
||
detaching ‘package:survival’
|
||
|
||
> nameEx("lm.ridge")
|
||
> ### * lm.ridge
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: lm.ridge
|
||
> ### Title: Ridge Regression
|
||
> ### Aliases: lm.ridge plot.ridgelm print.ridgelm select select.ridgelm
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> longley # not the same as the S-PLUS dataset
|
||
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
|
||
1947 83.0 234.289 235.6 159.0 107.608 1947 60.323
|
||
1948 88.5 259.426 232.5 145.6 108.632 1948 61.122
|
||
1949 88.2 258.054 368.2 161.6 109.773 1949 60.171
|
||
1950 89.5 284.599 335.1 165.0 110.929 1950 61.187
|
||
1951 96.2 328.975 209.9 309.9 112.075 1951 63.221
|
||
1952 98.1 346.999 193.2 359.4 113.270 1952 63.639
|
||
1953 99.0 365.385 187.0 354.7 115.094 1953 64.989
|
||
1954 100.0 363.112 357.8 335.0 116.219 1954 63.761
|
||
1955 101.2 397.469 290.4 304.8 117.388 1955 66.019
|
||
1956 104.6 419.180 282.2 285.7 118.734 1956 67.857
|
||
1957 108.4 442.769 293.6 279.8 120.445 1957 68.169
|
||
1958 110.8 444.546 468.1 263.7 121.950 1958 66.513
|
||
1959 112.6 482.704 381.3 255.2 123.366 1959 68.655
|
||
1960 114.2 502.601 393.1 251.4 125.368 1960 69.564
|
||
1961 115.7 518.173 480.6 257.2 127.852 1961 69.331
|
||
1962 116.9 554.894 400.7 282.7 130.081 1962 70.551
|
||
> names(longley)[1] <- "y"
|
||
> lm.ridge(y ~ ., longley)
|
||
GNP Unemployed Armed.Forces Population
|
||
2946.85636017 0.26352725 0.03648291 0.01116105 -1.73702984
|
||
Year Employed
|
||
-1.41879853 0.23128785
|
||
> plot(lm.ridge(y ~ ., longley,
|
||
+ lambda = seq(0,0.1,0.001)))
|
||
> select(lm.ridge(y ~ ., longley,
|
||
+ lambda = seq(0,0.1,0.0001)))
|
||
modified HKB estimator is 0.006836982
|
||
modified L-W estimator is 0.05267247
|
||
smallest value of GCV at 0.0057
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("loglm")
|
||
> ### * loglm
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: loglm
|
||
> ### Title: Fit Log-Linear Models by Iterative Proportional Scaling
|
||
> ### Aliases: loglm
|
||
> ### Keywords: category models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # The data frames Cars93, minn38 and quine are available
|
||
> # in the MASS package.
|
||
>
|
||
> # Case 1: frequencies specified as an array.
|
||
> sapply(minn38, function(x) length(levels(x)))
|
||
hs phs fol sex f
|
||
3 4 7 2 0
|
||
> ## hs phs fol sex f
|
||
> ## 3 4 7 2 0
|
||
> ##minn38a <- array(0, c(3,4,7,2), lapply(minn38[, -5], levels))
|
||
> ##minn38a[data.matrix(minn38[,-5])] <- minn38$f
|
||
>
|
||
> ## or more simply
|
||
> minn38a <- xtabs(f ~ ., minn38)
|
||
>
|
||
> fm <- loglm(~ 1 + 2 + 3 + 4, minn38a) # numerals as names.
|
||
> deviance(fm)
|
||
[1] 3711.914
|
||
> ## [1] 3711.9
|
||
> fm1 <- update(fm, .~.^2)
|
||
> fm2 <- update(fm, .~.^3, print = TRUE)
|
||
5 iterations: deviation 0.07512432
|
||
> ## 5 iterations: deviation 0.075
|
||
> anova(fm, fm1, fm2)
|
||
LR tests for hierarchical log-linear models
|
||
|
||
Model 1:
|
||
~1 + 2 + 3 + 4
|
||
Model 2:
|
||
. ~ `1` + `2` + `3` + `4` + `1`:`2` + `1`:`3` + `1`:`4` + `2`:`3` + `2`:`4` + `3`:`4`
|
||
Model 3:
|
||
. ~ `1` + `2` + `3` + `4` + `1`:`2` + `1`:`3` + `1`:`4` + `2`:`3` + `2`:`4` + `3`:`4` + `1`:`2`:`3` + `1`:`2`:`4` + `1`:`3`:`4` + `2`:`3`:`4`
|
||
|
||
Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
|
||
Model 1 3711.91367 155
|
||
Model 2 220.04285 108 3491.87082 47 0.00000
|
||
Model 3 47.74492 36 172.29794 72 0.00000
|
||
Saturated 0.00000 0 47.74492 36 0.09114
|
||
>
|
||
> # Case 1. An array generated with xtabs.
|
||
>
|
||
> loglm(~ Type + Origin, xtabs(~ Type + Origin, Cars93))
|
||
Call:
|
||
loglm(formula = ~Type + Origin, data = xtabs(~Type + Origin,
|
||
Cars93))
|
||
|
||
Statistics:
|
||
X^2 df P(> X^2)
|
||
Likelihood Ratio 18.36179 5 0.00252554
|
||
Pearson 14.07985 5 0.01511005
|
||
>
|
||
> # Case 2. Frequencies given as a vector in a data frame
|
||
> names(quine)
|
||
[1] "Eth" "Sex" "Age" "Lrn" "Days"
|
||
> ## [1] "Eth" "Sex" "Age" "Lrn" "Days"
|
||
> fm <- loglm(Days ~ .^2, quine)
|
||
> gm <- glm(Days ~ .^2, poisson, quine) # check glm.
|
||
> c(deviance(fm), deviance(gm)) # deviances agree
|
||
[1] 1368.669 1368.669
|
||
> ## [1] 1368.7 1368.7
|
||
> c(fm$df, gm$df) # resid df do not!
|
||
[1] 127
|
||
> c(fm$df, gm$df.residual) # resid df do not!
|
||
[1] 127 128
|
||
> ## [1] 127 128
|
||
> # The loglm residual degrees of freedom is wrong because of
|
||
> # a non-detectable redundancy in the model matrix.
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("logtrans")
|
||
> ### * logtrans
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: logtrans
|
||
> ### Title: Estimate log Transformation Parameter
|
||
> ### Aliases: logtrans logtrans.formula logtrans.lm logtrans.default
|
||
> ### Keywords: regression models hplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> logtrans(Days ~ Age*Sex*Eth*Lrn, data = quine,
|
||
+ alpha = seq(0.75, 6.5, length.out = 20))
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("lqs")
|
||
> ### * lqs
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: lqs
|
||
> ### Title: Resistant Regression
|
||
> ### Aliases: lqs lqs.formula lqs.default lmsreg ltsreg
|
||
> ### Keywords: models robust
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> set.seed(123) # make reproducible
|
||
> lqs(stack.loss ~ ., data = stackloss)
|
||
Call:
|
||
lqs.formula(formula = stack.loss ~ ., data = stackloss)
|
||
|
||
Coefficients:
|
||
(Intercept) Air.Flow Water.Temp Acid.Conc.
|
||
-3.631e+01 7.292e-01 4.167e-01 -1.659e-16
|
||
|
||
Scale estimates 0.9149 1.0148
|
||
|
||
> lqs(stack.loss ~ ., data = stackloss, method = "S", nsamp = "exact")
|
||
Call:
|
||
lqs.formula(formula = stack.loss ~ ., data = stackloss, nsamp = "exact",
|
||
method = "S")
|
||
|
||
Coefficients:
|
||
(Intercept) Air.Flow Water.Temp Acid.Conc.
|
||
-35.37611 0.82522 0.44248 -0.07965
|
||
|
||
Scale estimates 1.912
|
||
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("mca")
|
||
> ### * mca
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: mca
|
||
> ### Title: Multiple Correspondence Analysis
|
||
> ### Aliases: mca print.mca
|
||
> ### Keywords: category multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> farms.mca <- mca(farms, abbrev=TRUE)
|
||
> farms.mca
|
||
Call:
|
||
mca(df = farms, abbrev = TRUE)
|
||
|
||
Multiple correspondence analysis of 20 cases of 4 factors
|
||
|
||
Correlations 0.806 0.745 cumulative % explained 26.87 51.71
|
||
> plot(farms.mca)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("menarche")
|
||
> ### * menarche
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: menarche
|
||
> ### Title: Age of Menarche in Warsaw
|
||
> ### Aliases: menarche
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> mprob <- glm(cbind(Menarche, Total - Menarche) ~ Age,
|
||
+ binomial(link = probit), data = menarche)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("motors")
|
||
> ### * motors
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: motors
|
||
> ### Title: Accelerated Life Testing of Motorettes
|
||
> ### Aliases: motors
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> library(survival)
|
||
> plot(survfit(Surv(time, cens) ~ factor(temp), motors), conf.int = FALSE)
|
||
> # fit Weibull model
|
||
> motor.wei <- survreg(Surv(time, cens) ~ temp, motors)
|
||
> summary(motor.wei)
|
||
|
||
Call:
|
||
survreg(formula = Surv(time, cens) ~ temp, data = motors)
|
||
Value Std. Error z p
|
||
(Intercept) 16.31852 0.62296 26.2 < 2e-16
|
||
temp -0.04531 0.00319 -14.2 < 2e-16
|
||
Log(scale) -1.09564 0.21480 -5.1 3.4e-07
|
||
|
||
Scale= 0.334
|
||
|
||
Weibull distribution
|
||
Loglik(model)= -147.4 Loglik(intercept only)= -169.5
|
||
Chisq= 44.32 on 1 degrees of freedom, p= 2.8e-11
|
||
Number of Newton-Raphson Iterations: 7
|
||
n= 40
|
||
|
||
> # and predict at 130C
|
||
> unlist(predict(motor.wei, data.frame(temp=130), se.fit = TRUE))
|
||
fit.1 se.fit.1
|
||
33813.06 7506.36
|
||
>
|
||
> motor.cox <- coxph(Surv(time, cens) ~ temp, motors)
|
||
> summary(motor.cox)
|
||
Call:
|
||
coxph(formula = Surv(time, cens) ~ temp, data = motors)
|
||
|
||
n= 40, number of events= 17
|
||
|
||
coef exp(coef) se(coef) z Pr(>|z|)
|
||
temp 0.09185 1.09620 0.02736 3.358 0.000786 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
exp(coef) exp(-coef) lower .95 upper .95
|
||
temp 1.096 0.9122 1.039 1.157
|
||
|
||
Concordance= 0.84 (se = 0.035 )
|
||
Likelihood ratio test= 25.56 on 1 df, p=4e-07
|
||
Wald test = 11.27 on 1 df, p=8e-04
|
||
Score (logrank) test = 22.73 on 1 df, p=2e-06
|
||
|
||
> # predict at temperature 200
|
||
> plot(survfit(motor.cox, newdata = data.frame(temp=200),
|
||
+ conf.type = "log-log"))
|
||
> summary( survfit(motor.cox, newdata = data.frame(temp=130)) )
|
||
Call: survfit(formula = motor.cox, newdata = data.frame(temp = 130))
|
||
|
||
time n.risk n.event survival std.err lower 95% CI upper 95% CI
|
||
408 40 4 1.000 0.000254 0.999 1
|
||
504 36 3 1.000 0.000498 0.999 1
|
||
1344 28 2 0.999 0.001910 0.995 1
|
||
1440 26 1 0.998 0.002697 0.993 1
|
||
1764 20 1 0.996 0.005325 0.986 1
|
||
2772 19 1 0.994 0.007920 0.978 1
|
||
3444 18 1 0.991 0.010673 0.971 1
|
||
3542 17 1 0.988 0.013667 0.962 1
|
||
3780 16 1 0.985 0.016976 0.952 1
|
||
4860 15 1 0.981 0.020692 0.941 1
|
||
5196 14 1 0.977 0.024941 0.929 1
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
|
||
detaching ‘package:survival’
|
||
|
||
> nameEx("muscle")
|
||
> ### * muscle
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: muscle
|
||
> ### Title: Effect of Calcium Chloride on Muscle Contraction in Rat Hearts
|
||
> ### Aliases: muscle
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> A <- model.matrix(~ Strip - 1, data=muscle)
|
||
> rats.nls1 <- nls(log(Length) ~ cbind(A, rho^Conc),
|
||
+ data = muscle, start = c(rho=0.1), algorithm="plinear")
|
||
> (B <- coef(rats.nls1))
|
||
rho .lin.StripS01 .lin.StripS02 .lin.StripS03 .lin.StripS04
|
||
0.07776401 3.08304824 3.30137838 3.44562531 2.80464434
|
||
.lin.StripS05 .lin.StripS06 .lin.StripS07 .lin.StripS08 .lin.StripS09
|
||
2.60835015 3.03357725 3.52301734 3.38711844 3.46709396
|
||
.lin.StripS10 .lin.StripS11 .lin.StripS12 .lin.StripS13 .lin.StripS14
|
||
3.81438456 3.73878664 3.51332581 3.39741115 3.47088608
|
||
.lin.StripS15 .lin.StripS16 .lin.StripS17 .lin.StripS18 .lin.StripS19
|
||
3.72895847 3.31863862 3.37938673 2.96452195 3.58468686
|
||
.lin.StripS20 .lin.StripS21 .lin22
|
||
3.39628029 3.36998872 -2.96015460
|
||
>
|
||
> st <- list(alpha = B[2:22], beta = B[23], rho = B[1])
|
||
> (rats.nls2 <- nls(log(Length) ~ alpha[Strip] + beta*rho^Conc,
|
||
+ data = muscle, start = st))
|
||
Nonlinear regression model
|
||
model: log(Length) ~ alpha[Strip] + beta * rho^Conc
|
||
data: muscle
|
||
alpha..lin.StripS01 alpha..lin.StripS02 alpha..lin.StripS03 alpha..lin.StripS04
|
||
3.08305 3.30138 3.44563 2.80464
|
||
alpha..lin.StripS05 alpha..lin.StripS06 alpha..lin.StripS07 alpha..lin.StripS08
|
||
2.60835 3.03358 3.52302 3.38712
|
||
alpha..lin.StripS09 alpha..lin.StripS10 alpha..lin.StripS11 alpha..lin.StripS12
|
||
3.46709 3.81438 3.73879 3.51333
|
||
alpha..lin.StripS13 alpha..lin.StripS14 alpha..lin.StripS15 alpha..lin.StripS16
|
||
3.39741 3.47089 3.72896 3.31864
|
||
alpha..lin.StripS17 alpha..lin.StripS18 alpha..lin.StripS19 alpha..lin.StripS20
|
||
3.37939 2.96452 3.58469 3.39628
|
||
alpha..lin.StripS21 beta..lin22 rho.rho
|
||
3.36999 -2.96015 0.07776
|
||
residual sum-of-squares: 1.045
|
||
|
||
Number of iterations to convergence: 0
|
||
Achieved convergence tolerance: 4.918e-06
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
> Muscle <- with(muscle, {
|
||
+ Muscle <- expand.grid(Conc = sort(unique(Conc)), Strip = levels(Strip))
|
||
+ Muscle$Yhat <- predict(rats.nls2, Muscle)
|
||
+ Muscle <- cbind(Muscle, logLength = rep(as.numeric(NA), 126))
|
||
+ ind <- match(paste(Strip, Conc),
|
||
+ paste(Muscle$Strip, Muscle$Conc))
|
||
+ Muscle$logLength[ind] <- log(Length)
|
||
+ Muscle})
|
||
>
|
||
> lattice::xyplot(Yhat ~ Conc | Strip, Muscle, as.table = TRUE,
|
||
+ ylim = range(c(Muscle$Yhat, Muscle$logLength), na.rm = TRUE),
|
||
+ subscripts = TRUE, xlab = "Calcium Chloride concentration (mM)",
|
||
+ ylab = "log(Length in mm)", panel =
|
||
+ function(x, y, subscripts, ...) {
|
||
+ panel.xyplot(x, Muscle$logLength[subscripts], ...)
|
||
+ llines(spline(x, y))
|
||
+ })
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("mvrnorm")
|
||
> ### * mvrnorm
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: mvrnorm
|
||
> ### Title: Simulate from a Multivariate Normal Distribution
|
||
> ### Aliases: mvrnorm
|
||
> ### Keywords: distribution multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> Sigma <- matrix(c(10,3,3,2),2,2)
|
||
> Sigma
|
||
[,1] [,2]
|
||
[1,] 10 3
|
||
[2,] 3 2
|
||
> var(mvrnorm(n = 1000, rep(0, 2), Sigma))
|
||
[,1] [,2]
|
||
[1,] 10.697849 3.228279
|
||
[2,] 3.228279 2.165271
|
||
> var(mvrnorm(n = 1000, rep(0, 2), Sigma, empirical = TRUE))
|
||
[,1] [,2]
|
||
[1,] 10 3
|
||
[2,] 3 2
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("negative.binomial")
|
||
> ### * negative.binomial
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: negative.binomial
|
||
> ### Title: Family function for Negative Binomial GLMs
|
||
> ### Aliases: negative.binomial
|
||
> ### Keywords: regression models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # Fitting a Negative Binomial model to the quine data
|
||
> # with theta = 2 assumed known.
|
||
> #
|
||
> glm(Days ~ .^4, family = negative.binomial(2), data = quine)
|
||
|
||
Call: glm(formula = Days ~ .^4, family = negative.binomial(2), data = quine)
|
||
|
||
Coefficients:
|
||
(Intercept) EthN SexM
|
||
3.0564 -0.1386 -0.4914
|
||
AgeF1 AgeF2 AgeF3
|
||
-0.6227 -2.3632 -0.3784
|
||
LrnSL EthN:SexM EthN:AgeF1
|
||
-1.9577 -0.7524 0.1029
|
||
EthN:AgeF2 EthN:AgeF3 EthN:LrnSL
|
||
-0.5546 0.0633 2.2588
|
||
SexM:AgeF1 SexM:AgeF2 SexM:AgeF3
|
||
0.4092 3.1098 1.1145
|
||
SexM:LrnSL AgeF1:LrnSL AgeF2:LrnSL
|
||
1.5900 2.6421 4.8585
|
||
AgeF3:LrnSL EthN:SexM:AgeF1 EthN:SexM:AgeF2
|
||
NA -0.3105 0.3469
|
||
EthN:SexM:AgeF3 EthN:SexM:LrnSL EthN:AgeF1:LrnSL
|
||
0.8329 -0.1639 -3.5493
|
||
EthN:AgeF2:LrnSL EthN:AgeF3:LrnSL SexM:AgeF1:LrnSL
|
||
-3.3315 NA -2.4285
|
||
SexM:AgeF2:LrnSL SexM:AgeF3:LrnSL EthN:SexM:AgeF1:LrnSL
|
||
-4.1914 NA 2.1711
|
||
EthN:SexM:AgeF2:LrnSL EthN:SexM:AgeF3:LrnSL
|
||
2.1029 NA
|
||
|
||
Degrees of Freedom: 145 Total (i.e. Null); 118 Residual
|
||
Null Deviance: 280.2
|
||
Residual Deviance: 172 AIC: 1095
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("nlschools")
|
||
> ### * nlschools
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: nlschools
|
||
> ### Title: Eighth-Grade Pupils in the Netherlands
|
||
> ### Aliases: nlschools
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## Don't show:
|
||
> op <- options(digits=5)
|
||
> ## End(Don't show)
|
||
> nl1 <- within(nlschools, {
|
||
+ IQave <- tapply(IQ, class, mean)[as.character(class)]
|
||
+ IQ <- IQ - IQave
|
||
+ })
|
||
> cen <- c("IQ", "IQave", "SES")
|
||
> nl1[cen] <- scale(nl1[cen], center = TRUE, scale = FALSE)
|
||
>
|
||
> nl.lme <- nlme::lme(lang ~ IQ*COMB + IQave + SES,
|
||
+ random = ~ IQ | class, data = nl1)
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(nl.lme)
|
||
Linear mixed-effects model fit by REML
|
||
Data: nl1
|
||
AIC BIC logLik
|
||
15120 15178 -7550.2
|
||
|
||
Random effects:
|
||
Formula: ~IQ | class
|
||
Structure: General positive-definite, Log-Cholesky parametrization
|
||
StdDev Corr
|
||
(Intercept) 2.78707 (Intr)
|
||
IQ 0.48424 -0.516
|
||
Residual 6.24839
|
||
|
||
Fixed effects: lang ~ IQ * COMB + IQave + SES
|
||
Value Std.Error DF t-value p-value
|
||
(Intercept) 41.370 0.35364 2151 116.985 0.0000
|
||
IQ 2.124 0.10070 2151 21.088 0.0000
|
||
COMB1 -1.672 0.58719 130 -2.847 0.0051
|
||
IQave 3.248 0.30021 130 10.818 0.0000
|
||
SES 0.157 0.01465 2151 10.697 0.0000
|
||
IQ:COMB1 0.431 0.18594 2151 2.317 0.0206
|
||
Correlation:
|
||
(Intr) IQ COMB1 IQave SES
|
||
IQ -0.257
|
||
COMB1 -0.609 0.155
|
||
IQave -0.049 0.041 0.171
|
||
SES 0.010 -0.190 -0.001 -0.168
|
||
IQ:COMB1 0.139 -0.522 -0.206 -0.016 -0.003
|
||
|
||
Standardized Within-Group Residuals:
|
||
Min Q1 Med Q3 Max
|
||
-4.059387 -0.631084 0.065519 0.717864 2.794540
|
||
|
||
Number of Observations: 2287
|
||
Number of Groups: 133
|
||
> ## IGNORE_RDIFF_END
|
||
> ## Don't show:
|
||
> options(op)
|
||
> ## End(Don't show)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("npk")
|
||
> ### * npk
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: npk
|
||
> ### Title: Classical N, P, K Factorial Experiment
|
||
> ### Aliases: npk
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> options(contrasts = c("contr.sum", "contr.poly"))
|
||
> npk.aov <- aov(yield ~ block + N*P*K, npk)
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> npk.aov
|
||
Call:
|
||
aov(formula = yield ~ block + N * P * K, data = npk)
|
||
|
||
Terms:
|
||
block N P K N:P N:K P:K
|
||
Sum of Squares 343.2950 189.2817 8.4017 95.2017 21.2817 33.1350 0.4817
|
||
Deg. of Freedom 5 1 1 1 1 1 1
|
||
Residuals
|
||
Sum of Squares 185.2867
|
||
Deg. of Freedom 12
|
||
|
||
Residual standard error: 3.929447
|
||
1 out of 13 effects not estimable
|
||
Estimated effects may be unbalanced
|
||
> summary(npk.aov)
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
block 5 343.3 68.66 4.447 0.01594 *
|
||
N 1 189.3 189.28 12.259 0.00437 **
|
||
P 1 8.4 8.40 0.544 0.47490
|
||
K 1 95.2 95.20 6.166 0.02880 *
|
||
N:P 1 21.3 21.28 1.378 0.26317
|
||
N:K 1 33.1 33.14 2.146 0.16865
|
||
P:K 1 0.5 0.48 0.031 0.86275
|
||
Residuals 12 185.3 15.44
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> alias(npk.aov)
|
||
Model :
|
||
yield ~ block + N * P * K
|
||
|
||
Complete :
|
||
(Intercept) block1 block2 block3 block4 block5 N1 P1 K1 N1:P1 N1:K1
|
||
N1:P1:K1 0 1 -1 -1 -1 1 0 0 0 0 0
|
||
P1:K1
|
||
N1:P1:K1 0
|
||
|
||
> coef(npk.aov)
|
||
(Intercept) block1 block2 block3 block4 block5
|
||
54.8750000 -0.8500000 2.5750000 5.9000000 -4.7500000 -4.3500000
|
||
N1 P1 K1 N1:P1 N1:K1 P1:K1
|
||
-2.8083333 0.5916667 1.9916667 -0.9416667 -1.1750000 0.1416667
|
||
> options(contrasts = c("contr.treatment", "contr.poly"))
|
||
> npk.aov1 <- aov(yield ~ block + N + K, data = npk)
|
||
> summary.lm(npk.aov1)
|
||
|
||
Call:
|
||
aov(formula = yield ~ block + N + K, data = npk)
|
||
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-6.4083 -2.1438 0.2042 2.3292 7.0750
|
||
|
||
Coefficients:
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
(Intercept) 53.208 2.276 23.381 8.5e-14 ***
|
||
block2 3.425 2.787 1.229 0.23690
|
||
block3 6.750 2.787 2.422 0.02769 *
|
||
block4 -3.900 2.787 -1.399 0.18082
|
||
block5 -3.500 2.787 -1.256 0.22723
|
||
block6 2.325 2.787 0.834 0.41646
|
||
N1 5.617 1.609 3.490 0.00302 **
|
||
K1 -3.983 1.609 -2.475 0.02487 *
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Residual standard error: 3.942 on 16 degrees of freedom
|
||
Multiple R-squared: 0.7163, Adjusted R-squared: 0.5922
|
||
F-statistic: 5.772 on 7 and 16 DF, p-value: 0.001805
|
||
|
||
> se.contrast(npk.aov1, list(N=="0", N=="1"), data = npk)
|
||
[1] 1.609175
|
||
> model.tables(npk.aov1, type = "means", se = TRUE)
|
||
Tables of means
|
||
Grand mean
|
||
|
||
54.875
|
||
|
||
block
|
||
block
|
||
1 2 3 4 5 6
|
||
54.03 57.45 60.78 50.12 50.52 56.35
|
||
|
||
N
|
||
N
|
||
0 1
|
||
52.07 57.68
|
||
|
||
K
|
||
K
|
||
0 1
|
||
56.87 52.88
|
||
|
||
Standard errors for differences of means
|
||
block N K
|
||
2.787 1.609 1.609
|
||
replic. 4 12 12
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
>
|
||
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
|
||
> cleanEx()
|
||
> nameEx("oats")
|
||
> ### * oats
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: oats
|
||
> ### Title: Data from an Oats Field Trial
|
||
> ### Aliases: oats
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> oats$Nf <- ordered(oats$N, levels = sort(levels(oats$N)))
|
||
> oats.aov <- aov(Y ~ Nf*V + Error(B/V), data = oats, qr = TRUE)
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(oats.aov)
|
||
|
||
Error: B
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
Residuals 5 15875 3175
|
||
|
||
Error: B:V
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
V 2 1786 893.2 1.485 0.272
|
||
Residuals 10 6013 601.3
|
||
|
||
Error: Within
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
Nf 3 20021 6674 37.686 2.46e-12 ***
|
||
Nf:V 6 322 54 0.303 0.932
|
||
Residuals 45 7969 177
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> summary(oats.aov, split = list(Nf=list(L=1, Dev=2:3)))
|
||
|
||
Error: B
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
Residuals 5 15875 3175
|
||
|
||
Error: B:V
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
V 2 1786 893.2 1.485 0.272
|
||
Residuals 10 6013 601.3
|
||
|
||
Error: Within
|
||
Df Sum Sq Mean Sq F value Pr(>F)
|
||
Nf 3 20021 6674 37.686 2.46e-12 ***
|
||
Nf: L 1 19536 19536 110.323 1.09e-13 ***
|
||
Nf: Dev 2 484 242 1.367 0.265
|
||
Nf:V 6 322 54 0.303 0.932
|
||
Nf:V: L 2 168 84 0.475 0.625
|
||
Nf:V: Dev 4 153 38 0.217 0.928
|
||
Residuals 45 7969 177
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> ## IGNORE_RDIFF_END
|
||
> par(mfrow = c(1,2), pty = "s")
|
||
> plot(fitted(oats.aov[[4]]), studres(oats.aov[[4]]))
|
||
> abline(h = 0, lty = 2)
|
||
> oats.pr <- proj(oats.aov)
|
||
> qqnorm(oats.pr[[4]][,"Residuals"], ylab = "Stratum 4 residuals")
|
||
> qqline(oats.pr[[4]][,"Residuals"])
|
||
>
|
||
> par(mfrow = c(1,1), pty = "m")
|
||
> oats.aov2 <- aov(Y ~ N + V + Error(B/V), data = oats, qr = TRUE)
|
||
> model.tables(oats.aov2, type = "means", se = TRUE)
|
||
Warning in model.tables.aovlist(oats.aov2, type = "means", se = TRUE) :
|
||
SEs for type 'means' are not yet implemented
|
||
Tables of means
|
||
Grand mean
|
||
|
||
103.9722
|
||
|
||
N
|
||
N
|
||
0.0cwt 0.2cwt 0.4cwt 0.6cwt
|
||
79.39 98.89 114.22 123.39
|
||
|
||
V
|
||
V
|
||
Golden.rain Marvellous Victory
|
||
104.50 109.79 97.63
|
||
>
|
||
>
|
||
>
|
||
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
|
||
> cleanEx()
|
||
> nameEx("parcoord")
|
||
> ### * parcoord
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: parcoord
|
||
> ### Title: Parallel Coordinates Plot
|
||
> ### Aliases: parcoord
|
||
> ### Keywords: hplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> parcoord(state.x77[, c(7, 4, 6, 2, 5, 3)])
|
||
>
|
||
> ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
|
||
> parcoord(log(ir)[, c(3, 4, 2, 1)], col = 1 + (0:149)%/%50)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("petrol")
|
||
> ### * petrol
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: petrol
|
||
> ### Title: N. L. Prater's Petrol Refinery Data
|
||
> ### Aliases: petrol
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> library(nlme)
|
||
> Petrol <- petrol
|
||
> Petrol[, 2:5] <- scale(as.matrix(Petrol[, 2:5]), scale = FALSE)
|
||
> pet3.lme <- lme(Y ~ SG + VP + V10 + EP,
|
||
+ random = ~ 1 | No, data = Petrol)
|
||
> pet3.lme <- update(pet3.lme, method = "ML")
|
||
> pet4.lme <- update(pet3.lme, fixed. = Y ~ V10 + EP)
|
||
> anova(pet4.lme, pet3.lme)
|
||
Model df AIC BIC logLik Test L.Ratio p-value
|
||
pet4.lme 1 5 149.6119 156.9406 -69.80594
|
||
pet3.lme 2 7 149.3833 159.6435 -67.69166 1 vs 2 4.22855 0.1207
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
|
||
detaching ‘package:nlme’
|
||
|
||
> nameEx("plot.mca")
|
||
> ### * plot.mca
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: plot.mca
|
||
> ### Title: Plot Method for Objects of Class 'mca'
|
||
> ### Aliases: plot.mca
|
||
> ### Keywords: hplot multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> plot(mca(farms, abbrev = TRUE))
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("polr")
|
||
> ### * polr
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: polr
|
||
> ### Title: Ordered Logistic or Probit Regression
|
||
> ### Aliases: polr
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> options(contrasts = c("contr.treatment", "contr.poly"))
|
||
> house.plr <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
|
||
> house.plr
|
||
Call:
|
||
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq)
|
||
|
||
Coefficients:
|
||
InflMedium InflHigh TypeApartment TypeAtrium TypeTerrace
|
||
0.5663937 1.2888191 -0.5723501 -0.3661866 -1.0910149
|
||
ContHigh
|
||
0.3602841
|
||
|
||
Intercepts:
|
||
Low|Medium Medium|High
|
||
-0.4961353 0.6907083
|
||
|
||
Residual Deviance: 3479.149
|
||
AIC: 3495.149
|
||
> summary(house.plr, digits = 3)
|
||
|
||
Re-fitting to get Hessian
|
||
|
||
Call:
|
||
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq)
|
||
|
||
Coefficients:
|
||
Value Std. Error t value
|
||
InflMedium 0.566 0.1047 5.41
|
||
InflHigh 1.289 0.1272 10.14
|
||
TypeApartment -0.572 0.1192 -4.80
|
||
TypeAtrium -0.366 0.1552 -2.36
|
||
TypeTerrace -1.091 0.1515 -7.20
|
||
ContHigh 0.360 0.0955 3.77
|
||
|
||
Intercepts:
|
||
Value Std. Error t value
|
||
Low|Medium -0.496 0.125 -3.974
|
||
Medium|High 0.691 0.125 5.505
|
||
|
||
Residual Deviance: 3479.149
|
||
AIC: 3495.149
|
||
> ## slightly worse fit from
|
||
> summary(update(house.plr, method = "probit", Hess = TRUE), digits = 3)
|
||
Call:
|
||
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq,
|
||
Hess = TRUE, method = "probit")
|
||
|
||
Coefficients:
|
||
Value Std. Error t value
|
||
InflMedium 0.346 0.0641 5.40
|
||
InflHigh 0.783 0.0764 10.24
|
||
TypeApartment -0.348 0.0723 -4.81
|
||
TypeAtrium -0.218 0.0948 -2.30
|
||
TypeTerrace -0.664 0.0918 -7.24
|
||
ContHigh 0.222 0.0581 3.83
|
||
|
||
Intercepts:
|
||
Value Std. Error t value
|
||
Low|Medium -0.300 0.076 -3.937
|
||
Medium|High 0.427 0.076 5.585
|
||
|
||
Residual Deviance: 3479.689
|
||
AIC: 3495.689
|
||
> ## although it is not really appropriate, can fit
|
||
> summary(update(house.plr, method = "loglog", Hess = TRUE), digits = 3)
|
||
Call:
|
||
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq,
|
||
Hess = TRUE, method = "loglog")
|
||
|
||
Coefficients:
|
||
Value Std. Error t value
|
||
InflMedium 0.367 0.0727 5.05
|
||
InflHigh 0.790 0.0806 9.81
|
||
TypeApartment -0.349 0.0757 -4.61
|
||
TypeAtrium -0.196 0.0988 -1.98
|
||
TypeTerrace -0.698 0.1043 -6.69
|
||
ContHigh 0.268 0.0636 4.21
|
||
|
||
Intercepts:
|
||
Value Std. Error t value
|
||
Low|Medium 0.086 0.083 1.038
|
||
Medium|High 0.892 0.087 10.223
|
||
|
||
Residual Deviance: 3491.41
|
||
AIC: 3507.41
|
||
> summary(update(house.plr, method = "cloglog", Hess = TRUE), digits = 3)
|
||
Call:
|
||
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq,
|
||
Hess = TRUE, method = "cloglog")
|
||
|
||
Coefficients:
|
||
Value Std. Error t value
|
||
InflMedium 0.382 0.0703 5.44
|
||
InflHigh 0.915 0.0926 9.89
|
||
TypeApartment -0.407 0.0861 -4.73
|
||
TypeAtrium -0.281 0.1111 -2.52
|
||
TypeTerrace -0.742 0.1013 -7.33
|
||
ContHigh 0.209 0.0651 3.21
|
||
|
||
Intercepts:
|
||
Value Std. Error t value
|
||
Low|Medium -0.796 0.090 -8.881
|
||
Medium|High 0.055 0.086 0.647
|
||
|
||
Residual Deviance: 3484.053
|
||
AIC: 3500.053
|
||
>
|
||
> predict(house.plr, housing, type = "p")
|
||
Low Medium High
|
||
1 0.3784493 0.2876752 0.3338755
|
||
2 0.3784493 0.2876752 0.3338755
|
||
3 0.3784493 0.2876752 0.3338755
|
||
4 0.2568264 0.2742122 0.4689613
|
||
5 0.2568264 0.2742122 0.4689613
|
||
6 0.2568264 0.2742122 0.4689613
|
||
7 0.1436924 0.2110836 0.6452240
|
||
8 0.1436924 0.2110836 0.6452240
|
||
9 0.1436924 0.2110836 0.6452240
|
||
10 0.5190445 0.2605077 0.2204478
|
||
11 0.5190445 0.2605077 0.2204478
|
||
12 0.5190445 0.2605077 0.2204478
|
||
13 0.3798514 0.2875965 0.3325521
|
||
14 0.3798514 0.2875965 0.3325521
|
||
15 0.3798514 0.2875965 0.3325521
|
||
16 0.2292406 0.2643196 0.5064398
|
||
17 0.2292406 0.2643196 0.5064398
|
||
18 0.2292406 0.2643196 0.5064398
|
||
19 0.4675584 0.2745383 0.2579033
|
||
20 0.4675584 0.2745383 0.2579033
|
||
21 0.4675584 0.2745383 0.2579033
|
||
22 0.3326236 0.2876008 0.3797755
|
||
23 0.3326236 0.2876008 0.3797755
|
||
24 0.3326236 0.2876008 0.3797755
|
||
25 0.1948548 0.2474226 0.5577225
|
||
26 0.1948548 0.2474226 0.5577225
|
||
27 0.1948548 0.2474226 0.5577225
|
||
28 0.6444840 0.2114256 0.1440905
|
||
29 0.6444840 0.2114256 0.1440905
|
||
30 0.6444840 0.2114256 0.1440905
|
||
31 0.5071210 0.2641196 0.2287594
|
||
32 0.5071210 0.2641196 0.2287594
|
||
33 0.5071210 0.2641196 0.2287594
|
||
34 0.3331573 0.2876330 0.3792097
|
||
35 0.3331573 0.2876330 0.3792097
|
||
36 0.3331573 0.2876330 0.3792097
|
||
37 0.2980880 0.2837746 0.4181374
|
||
38 0.2980880 0.2837746 0.4181374
|
||
39 0.2980880 0.2837746 0.4181374
|
||
40 0.1942209 0.2470589 0.5587202
|
||
41 0.1942209 0.2470589 0.5587202
|
||
42 0.1942209 0.2470589 0.5587202
|
||
43 0.1047770 0.1724227 0.7228003
|
||
44 0.1047770 0.1724227 0.7228003
|
||
45 0.1047770 0.1724227 0.7228003
|
||
46 0.4294564 0.2820629 0.2884807
|
||
47 0.4294564 0.2820629 0.2884807
|
||
48 0.4294564 0.2820629 0.2884807
|
||
49 0.2993357 0.2839753 0.4166890
|
||
50 0.2993357 0.2839753 0.4166890
|
||
51 0.2993357 0.2839753 0.4166890
|
||
52 0.1718050 0.2328648 0.5953302
|
||
53 0.1718050 0.2328648 0.5953302
|
||
54 0.1718050 0.2328648 0.5953302
|
||
55 0.3798387 0.2875972 0.3325641
|
||
56 0.3798387 0.2875972 0.3325641
|
||
57 0.3798387 0.2875972 0.3325641
|
||
58 0.2579546 0.2745537 0.4674917
|
||
59 0.2579546 0.2745537 0.4674917
|
||
60 0.2579546 0.2745537 0.4674917
|
||
61 0.1444202 0.2117081 0.6438717
|
||
62 0.1444202 0.2117081 0.6438717
|
||
63 0.1444202 0.2117081 0.6438717
|
||
64 0.5583813 0.2471826 0.1944361
|
||
65 0.5583813 0.2471826 0.1944361
|
||
66 0.5583813 0.2471826 0.1944361
|
||
67 0.4178031 0.2838213 0.2983756
|
||
68 0.4178031 0.2838213 0.2983756
|
||
69 0.4178031 0.2838213 0.2983756
|
||
70 0.2584149 0.2746916 0.4668935
|
||
71 0.2584149 0.2746916 0.4668935
|
||
72 0.2584149 0.2746916 0.4668935
|
||
> addterm(house.plr, ~.^2, test = "Chisq")
|
||
Single term additions
|
||
|
||
Model:
|
||
Sat ~ Infl + Type + Cont
|
||
Df AIC LRT Pr(Chi)
|
||
<none> 3495.1
|
||
Infl:Type 6 3484.6 22.5093 0.0009786 ***
|
||
Infl:Cont 2 3498.9 0.2090 0.9007957
|
||
Type:Cont 3 3492.5 8.6662 0.0340752 *
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> house.plr2 <- stepAIC(house.plr, ~.^2)
|
||
Start: AIC=3495.15
|
||
Sat ~ Infl + Type + Cont
|
||
|
||
Df AIC
|
||
+ Infl:Type 6 3484.6
|
||
+ Type:Cont 3 3492.5
|
||
<none> 3495.1
|
||
+ Infl:Cont 2 3498.9
|
||
- Cont 1 3507.5
|
||
- Type 3 3545.1
|
||
- Infl 2 3599.4
|
||
|
||
Step: AIC=3484.64
|
||
Sat ~ Infl + Type + Cont + Infl:Type
|
||
|
||
Df AIC
|
||
+ Type:Cont 3 3482.7
|
||
<none> 3484.6
|
||
+ Infl:Cont 2 3488.5
|
||
- Infl:Type 6 3495.1
|
||
- Cont 1 3497.8
|
||
|
||
Step: AIC=3482.69
|
||
Sat ~ Infl + Type + Cont + Infl:Type + Type:Cont
|
||
|
||
Df AIC
|
||
<none> 3482.7
|
||
- Type:Cont 3 3484.6
|
||
+ Infl:Cont 2 3486.6
|
||
- Infl:Type 6 3492.5
|
||
> house.plr2$anova
|
||
Stepwise Model Path
|
||
Analysis of Deviance Table
|
||
|
||
Initial Model:
|
||
Sat ~ Infl + Type + Cont
|
||
|
||
Final Model:
|
||
Sat ~ Infl + Type + Cont + Infl:Type + Type:Cont
|
||
|
||
|
||
Step Df Deviance Resid. Df Resid. Dev AIC
|
||
1 1673 3479.149 3495.149
|
||
2 + Infl:Type 6 22.509347 1667 3456.640 3484.640
|
||
3 + Type:Cont 3 7.945029 1664 3448.695 3482.695
|
||
> anova(house.plr, house.plr2)
|
||
Likelihood ratio tests of ordinal regression models
|
||
|
||
Response: Sat
|
||
Model Resid. df Resid. Dev Test Df
|
||
1 Infl + Type + Cont 1673 3479.149
|
||
2 Infl + Type + Cont + Infl:Type + Type:Cont 1664 3448.695 1 vs 2 9
|
||
LR stat. Pr(Chi)
|
||
1
|
||
2 30.45438 0.0003670555
|
||
>
|
||
> house.plr <- update(house.plr, Hess=TRUE)
|
||
> pr <- profile(house.plr)
|
||
> confint(pr)
|
||
2.5 % 97.5 %
|
||
InflMedium 0.3616415 0.77195375
|
||
InflHigh 1.0409701 1.53958138
|
||
TypeApartment -0.8069590 -0.33940432
|
||
TypeAtrium -0.6705862 -0.06204495
|
||
TypeTerrace -1.3893863 -0.79533958
|
||
ContHigh 0.1733589 0.54792854
|
||
> plot(pr)
|
||
> pairs(pr)
|
||
>
|
||
>
|
||
>
|
||
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
|
||
> cleanEx()
|
||
> nameEx("predict.glmmPQL")
|
||
> ### * predict.glmmPQL
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: predict.glmmPQL
|
||
> ### Title: Predict Method for glmmPQL Fits
|
||
> ### Aliases: predict.glmmPQL
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> fit <- glmmPQL(y ~ trt + I(week > 2), random = ~1 | ID,
|
||
+ family = binomial, data = bacteria)
|
||
iteration 1
|
||
iteration 2
|
||
iteration 3
|
||
iteration 4
|
||
iteration 5
|
||
iteration 6
|
||
> predict(fit, bacteria, level = 0, type="response")
|
||
[1] 0.9680779 0.9680779 0.8587270 0.8587270 0.9344832 0.9344832 0.7408574
|
||
[8] 0.7408574 0.8970307 0.8970307 0.6358511 0.6358511 0.6358511 0.9680779
|
||
[15] 0.9680779 0.8587270 0.8587270 0.8587270 0.9680779 0.9680779 0.8587270
|
||
[22] 0.8587270 0.8587270 0.8970307 0.8970307 0.6358511 0.6358511 0.9344832
|
||
[29] 0.9344832 0.7408574 0.7408574 0.7408574 0.9680779 0.9680779 0.8587270
|
||
[36] 0.8587270 0.8587270 0.9680779 0.9680779 0.8587270 0.8587270 0.8587270
|
||
[43] 0.9344832 0.7408574 0.9680779 0.9680779 0.8587270 0.8587270 0.8587270
|
||
[50] 0.8970307 0.8970307 0.6358511 0.6358511 0.6358511 0.9680779 0.9680779
|
||
[57] 0.8587270 0.8587270 0.8587270 0.9680779 0.9680779 0.8587270 0.8970307
|
||
[64] 0.8970307 0.6358511 0.6358511 0.6358511 0.9344832 0.9344832 0.7408574
|
||
[71] 0.7408574 0.7408574 0.9680779 0.9680779 0.8587270 0.8587270 0.8587270
|
||
[78] 0.8970307 0.8970307 0.6358511 0.6358511 0.6358511 0.9680779 0.9680779
|
||
[85] 0.8587270 0.8587270 0.8587270 0.9344832 0.9344832 0.7408574 0.7408574
|
||
[92] 0.9680779 0.9680779 0.8587270 0.8587270 0.8587270 0.9680779 0.9680779
|
||
[99] 0.8587270 0.8587270 0.8587270 0.9680779 0.9680779 0.8587270 0.8587270
|
||
[106] 0.8587270 0.9344832 0.9344832 0.7408574 0.7408574 0.7408574 0.8970307
|
||
[113] 0.8970307 0.6358511 0.6358511 0.9680779 0.9680779 0.8587270 0.9680779
|
||
[120] 0.9680779 0.8587270 0.8587270 0.8970307 0.8970307 0.6358511 0.6358511
|
||
[127] 0.6358511 0.9344832 0.7408574 0.7408574 0.7408574 0.9680779 0.8587270
|
||
[134] 0.8587270 0.8587270 0.8970307 0.8970307 0.6358511 0.6358511 0.6358511
|
||
[141] 0.9680779 0.9680779 0.8587270 0.8587270 0.8587270 0.9344832 0.7408574
|
||
[148] 0.8970307 0.8970307 0.6358511 0.6358511 0.9680779 0.9680779 0.8587270
|
||
[155] 0.8970307 0.8970307 0.6358511 0.9680779 0.9680779 0.8587270 0.8587270
|
||
[162] 0.8587270 0.9344832 0.9344832 0.7408574 0.7408574 0.7408574 0.9680779
|
||
[169] 0.9680779 0.8587270 0.8587270 0.8587270 0.9344832 0.7408574 0.8970307
|
||
[176] 0.8970307 0.6358511 0.6358511 0.6358511 0.9344832 0.9344832 0.7408574
|
||
[183] 0.7408574 0.9680779 0.9680779 0.8587270 0.8587270 0.8587270 0.8970307
|
||
[190] 0.8970307 0.6358511 0.6358511 0.6358511 0.9344832 0.9344832 0.7408574
|
||
[197] 0.7408574 0.7408574 0.8970307 0.6358511 0.6358511 0.9344832 0.9344832
|
||
[204] 0.7408574 0.7408574 0.7408574 0.8970307 0.8970307 0.6358511 0.6358511
|
||
[211] 0.9344832 0.9344832 0.7408574 0.7408574 0.7408574 0.9344832 0.9344832
|
||
[218] 0.7408574 0.7408574 0.7408574
|
||
attr(,"label")
|
||
[1] "Predicted values"
|
||
> predict(fit, bacteria, level = 1, type="response")
|
||
X01 X01 X01 X01 X02 X02 X02 X02
|
||
0.9828449 0.9828449 0.9198935 0.9198935 0.9050782 0.9050782 0.6564944 0.6564944
|
||
X03 X03 X03 X03 X03 X04 X04 X04
|
||
0.9724022 0.9724022 0.8759665 0.8759665 0.8759665 0.9851548 0.9851548 0.9300763
|
||
X04 X04 X05 X05 X05 X05 X05 X06
|
||
0.9300763 0.9300763 0.9851548 0.9851548 0.9300763 0.9300763 0.9300763 0.9662755
|
||
X06 X06 X06 X07 X07 X07 X07 X07
|
||
0.9662755 0.8516962 0.8516962 0.7291679 0.7291679 0.3504978 0.3504978 0.3504978
|
||
X08 X08 X08 X08 X08 X09 X09 X09
|
||
0.9426815 0.9426815 0.7672499 0.7672499 0.7672499 0.9851548 0.9851548 0.9300763
|
||
X09 X09 X10 X10 X11 X11 X11 X11
|
||
0.9300763 0.9300763 0.9640326 0.8430706 0.9851548 0.9851548 0.9300763 0.9300763
|
||
X11 X12 X12 X12 X12 X12 X13 X13
|
||
0.9300763 0.8334870 0.8334870 0.5008219 0.5008219 0.5008219 0.9851548 0.9851548
|
||
X13 X13 X13 X14 X14 X14 X15 X15
|
||
0.9300763 0.9300763 0.9300763 0.8907227 0.8907227 0.6203155 0.9724022 0.9724022
|
||
X15 X15 X15 X16 X16 X16 X16 X16
|
||
0.8759665 0.8759665 0.8759665 0.9287777 0.9287777 0.7232833 0.7232833 0.7232833
|
||
X17 X17 X17 X17 X17 X18 X18 X18
|
||
0.9426815 0.9426815 0.7672499 0.7672499 0.7672499 0.7070916 0.7070916 0.3260827
|
||
X18 X18 X19 X19 X19 X19 X19 X20
|
||
0.3260827 0.3260827 0.8702991 0.8702991 0.5735499 0.5735499 0.5735499 0.9736293
|
||
X20 X20 X20 X21 X21 X21 X21 X21
|
||
0.9736293 0.8809564 0.8809564 0.9851548 0.9851548 0.9300763 0.9300763 0.9300763
|
||
Y01 Y01 Y01 Y01 Y01 Y02 Y02 Y02
|
||
0.9851548 0.9851548 0.9300763 0.9300763 0.9300763 0.7607971 0.7607971 0.3893126
|
||
Y02 Y02 Y03 Y03 Y03 Y03 Y03 Y04
|
||
0.3893126 0.3893126 0.8487181 0.8487181 0.5292976 0.5292976 0.5292976 0.5734482
|
||
Y04 Y04 Y04 Y05 Y05 Y05 Y06 Y06
|
||
0.5734482 0.2122655 0.2122655 0.7144523 0.7144523 0.3339997 0.9828449 0.9828449
|
||
Y06 Y06 Y07 Y07 Y07 Y07 Y07 Y08
|
||
0.9198935 0.9198935 0.8334870 0.8334870 0.5008219 0.5008219 0.5008219 0.9238389
|
||
Y08 Y08 Y08 Y09 Y09 Y09 Y09 Y10
|
||
0.7085660 0.7085660 0.7085660 0.9847299 0.9281899 0.9281899 0.9281899 0.9188296
|
||
Y10 Y10 Y10 Y10 Y11 Y11 Y11 Y11
|
||
0.9188296 0.6940862 0.6940862 0.6940862 0.9851548 0.9851548 0.9300763 0.9300763
|
||
Y11 Y12 Y12 Y13 Y13 Y13 Y13 Y14
|
||
0.9300763 0.9640326 0.8430706 0.5734482 0.5734482 0.2122655 0.2122655 0.9793383
|
||
Y14 Y14 Z01 Z01 Z01 Z02 Z02 Z02
|
||
0.9793383 0.9047659 0.9556329 0.9556329 0.8119328 0.9851548 0.9851548 0.9300763
|
||
Z02 Z02 Z03 Z03 Z03 Z03 Z03 Z05
|
||
0.9300763 0.9300763 0.9779690 0.9779690 0.8989642 0.8989642 0.8989642 0.8702991
|
||
Z05 Z05 Z05 Z05 Z06 Z06 Z07 Z07
|
||
0.8702991 0.5735499 0.5735499 0.5735499 0.8306525 0.4957505 0.8334870 0.8334870
|
||
Z07 Z07 Z07 Z09 Z09 Z09 Z09 Z10
|
||
0.5008219 0.5008219 0.5008219 0.9736293 0.9736293 0.8809564 0.8809564 0.9851548
|
||
Z10 Z10 Z10 Z10 Z11 Z11 Z11 Z11
|
||
0.9851548 0.9300763 0.9300763 0.9300763 0.9724022 0.9724022 0.8759665 0.8759665
|
||
Z11 Z14 Z14 Z14 Z14 Z14 Z15 Z15
|
||
0.8759665 0.9287777 0.9287777 0.7232833 0.7232833 0.7232833 0.9643851 0.8444172
|
||
Z15 Z19 Z19 Z19 Z19 Z19 Z20 Z20
|
||
0.8444172 0.9779690 0.9779690 0.8989642 0.8989642 0.8989642 0.7620490 0.7620490
|
||
Z20 Z20 Z24 Z24 Z24 Z24 Z24 Z26
|
||
0.3909523 0.3909523 0.8487181 0.8487181 0.5292976 0.5292976 0.5292976 0.9287777
|
||
Z26 Z26 Z26 Z26
|
||
0.9287777 0.7232833 0.7232833 0.7232833
|
||
attr(,"label")
|
||
[1] "Predicted values"
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("predict.lda")
|
||
> ### * predict.lda
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: predict.lda
|
||
> ### Title: Classify Multivariate Observations by Linear Discrimination
|
||
> ### Aliases: predict.lda
|
||
> ### Keywords: multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> tr <- sample(1:50, 25)
|
||
> train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
|
||
> test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
|
||
> cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
|
||
> z <- lda(train, cl)
|
||
> predict(z, test)$class
|
||
[1] s s s s s s s s s s s s s s s s s s s s s s s s s c c c c c c c c c c c c c
|
||
[39] c c c c c c c c c c c c v v v v v v v v v v v v v v v v v c v v v v v v v
|
||
Levels: c s v
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("predict.lqs")
|
||
> ### * predict.lqs
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: predict.lqs
|
||
> ### Title: Predict from an lqs Fit
|
||
> ### Aliases: predict.lqs
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> set.seed(123)
|
||
> fm <- lqs(stack.loss ~ ., data = stackloss, method = "S", nsamp = "exact")
|
||
> predict(fm, stackloss)
|
||
1 2 3 4 5 6 7 8
|
||
35.500000 35.579646 30.409292 19.477876 18.592920 19.035398 19.000000 19.000000
|
||
9 10 11 12 13 14 15 16
|
||
15.734513 14.079646 13.362832 13.000000 13.920354 13.486726 6.761062 7.000000
|
||
17 18 19 20 21
|
||
8.557522 8.000000 8.362832 13.154867 23.991150
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("predict.qda")
|
||
> ### * predict.qda
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: predict.qda
|
||
> ### Title: Classify from Quadratic Discriminant Analysis
|
||
> ### Aliases: predict.qda
|
||
> ### Keywords: multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> tr <- sample(1:50, 25)
|
||
> train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
|
||
> test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
|
||
> cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
|
||
> zq <- qda(train, cl)
|
||
> predict(zq, test)$class
|
||
[1] s s s s s s s s s s s s s s s s s s s s s s s s s c c c c c c c v c c c c c
|
||
[39] c c c c c c c c c c c c v v v v v v v v v v v v v v v v v v v v v v v v v
|
||
Levels: c s v
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("qda")
|
||
> ### * qda
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: qda
|
||
> ### Title: Quadratic Discriminant Analysis
|
||
> ### Aliases: qda qda.data.frame qda.default qda.formula qda.matrix
|
||
> ### model.frame.qda print.qda
|
||
> ### Keywords: multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> tr <- sample(1:50, 25)
|
||
> train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
|
||
> test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
|
||
> cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
|
||
> z <- qda(train, cl)
|
||
> predict(z,test)$class
|
||
[1] s s s s s s s s s s s s s s s s s s s s s s s s s c c c c c c c v c c c c c
|
||
[39] c c c c c c c c c c c c v v v v v v v v v v v v v v v v v v v v v v v v v
|
||
Levels: c s v
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("rational")
|
||
> ### * rational
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: rational
|
||
> ### Title: Rational Approximation
|
||
> ### Aliases: rational .rat
|
||
> ### Keywords: math
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> X <- matrix(runif(25), 5, 5)
|
||
> zapsmall(solve(X, X/5)) # print near-zeroes as zero
|
||
[,1] [,2] [,3] [,4] [,5]
|
||
[1,] 0.2 0.0 0.0 0.0 0.0
|
||
[2,] 0.0 0.2 0.0 0.0 0.0
|
||
[3,] 0.0 0.0 0.2 0.0 0.0
|
||
[4,] 0.0 0.0 0.0 0.2 0.0
|
||
[5,] 0.0 0.0 0.0 0.0 0.2
|
||
> rational(solve(X, X/5))
|
||
[,1] [,2] [,3] [,4] [,5]
|
||
[1,] 0.2 0.0 0.0 0.0 0.0
|
||
[2,] 0.0 0.2 0.0 0.0 0.0
|
||
[3,] 0.0 0.0 0.2 0.0 0.0
|
||
[4,] 0.0 0.0 0.0 0.2 0.0
|
||
[5,] 0.0 0.0 0.0 0.0 0.2
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("renumerate")
|
||
> ### * renumerate
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: renumerate
|
||
> ### Title: Convert a Formula Transformed by 'denumerate'
|
||
> ### Aliases: renumerate renumerate.formula
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> denumerate(~(1+2+3)^3 + a/b)
|
||
~(.v1 + .v2 + .v3)^3 + a/b
|
||
> ## ~ (.v1 + .v2 + .v3)^3 + a/b
|
||
> renumerate(.Last.value)
|
||
~(`1` + `2` + `3`)^3 + a/b
|
||
> ## ~ (1 + 2 + 3)^3 + a/b
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("rlm")
|
||
> ### * rlm
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: rlm
|
||
> ### Title: Robust Fitting of Linear Models
|
||
> ### Aliases: rlm rlm.default rlm.formula print.rlm predict.rlm psi.bisquare
|
||
> ### psi.hampel psi.huber
|
||
> ### Keywords: models robust
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> summary(rlm(stack.loss ~ ., stackloss))
|
||
|
||
Call: rlm(formula = stack.loss ~ ., data = stackloss)
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-8.91753 -1.73127 0.06187 1.54306 6.50163
|
||
|
||
Coefficients:
|
||
Value Std. Error t value
|
||
(Intercept) -41.0265 9.8073 -4.1832
|
||
Air.Flow 0.8294 0.1112 7.4597
|
||
Water.Temp 0.9261 0.3034 3.0524
|
||
Acid.Conc. -0.1278 0.1289 -0.9922
|
||
|
||
Residual standard error: 2.441 on 17 degrees of freedom
|
||
> rlm(stack.loss ~ ., stackloss, psi = psi.hampel, init = "lts")
|
||
Call:
|
||
rlm(formula = stack.loss ~ ., data = stackloss, psi = psi.hampel,
|
||
init = "lts")
|
||
Converged in 9 iterations
|
||
|
||
Coefficients:
|
||
(Intercept) Air.Flow Water.Temp Acid.Conc.
|
||
-40.4747826 0.7410853 1.2250730 -0.1455245
|
||
|
||
Degrees of freedom: 21 total; 17 residual
|
||
Scale estimate: 3.09
|
||
> rlm(stack.loss ~ ., stackloss, psi = psi.bisquare)
|
||
Call:
|
||
rlm(formula = stack.loss ~ ., data = stackloss, psi = psi.bisquare)
|
||
Converged in 11 iterations
|
||
|
||
Coefficients:
|
||
(Intercept) Air.Flow Water.Temp Acid.Conc.
|
||
-42.2852537 0.9275471 0.6507322 -0.1123310
|
||
|
||
Degrees of freedom: 21 total; 17 residual
|
||
Scale estimate: 2.28
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("rms.curv")
|
||
> ### * rms.curv
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: rms.curv
|
||
> ### Title: Relative Curvature Measures for Non-Linear Regression
|
||
> ### Aliases: rms.curv print.rms.curv
|
||
> ### Keywords: nonlinear
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # The treated sample from the Puromycin data
|
||
> mmcurve <- deriv3(~ Vm * conc/(K + conc), c("Vm", "K"),
|
||
+ function(Vm, K, conc) NULL)
|
||
> Treated <- Puromycin[Puromycin$state == "treated", ]
|
||
> (Purfit1 <- nls(rate ~ mmcurve(Vm, K, conc), data = Treated,
|
||
+ start = list(Vm=200, K=0.1)))
|
||
Nonlinear regression model
|
||
model: rate ~ mmcurve(Vm, K, conc)
|
||
data: Treated
|
||
Vm K
|
||
212.68363 0.06412
|
||
residual sum-of-squares: 1195
|
||
|
||
Number of iterations to convergence: 6
|
||
Achieved convergence tolerance: 6.096e-06
|
||
> rms.curv(Purfit1)
|
||
Parameter effects: c^theta x sqrt(F) = 0.2121
|
||
Intrinsic: c^iota x sqrt(F) = 0.092
|
||
> ##Parameter effects: c^theta x sqrt(F) = 0.2121
|
||
> ## Intrinsic: c^iota x sqrt(F) = 0.092
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("rnegbin")
|
||
> ### * rnegbin
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: rnegbin
|
||
> ### Title: Simulate Negative Binomial Variates
|
||
> ### Aliases: rnegbin
|
||
> ### Keywords: distribution
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> # Negative Binomials with means fitted(fm) and theta = 4.5
|
||
> fm <- glm.nb(Days ~ ., data = quine)
|
||
> dummy <- rnegbin(fitted(fm), theta = 4.5)
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("sammon")
|
||
> ### * sammon
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: sammon
|
||
> ### Title: Sammon's Non-Linear Mapping
|
||
> ### Aliases: sammon
|
||
> ### Keywords: multivariate
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> swiss.x <- as.matrix(swiss[, -1])
|
||
> swiss.sam <- sammon(dist(swiss.x))
|
||
Initial stress : 0.00824
|
||
stress after 10 iters: 0.00439, magic = 0.338
|
||
stress after 20 iters: 0.00383, magic = 0.500
|
||
stress after 30 iters: 0.00383, magic = 0.500
|
||
> plot(swiss.sam$points, type = "n")
|
||
> text(swiss.sam$points, labels = as.character(1:nrow(swiss.x)))
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("stepAIC")
|
||
> ### * stepAIC
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: stepAIC
|
||
> ### Title: Choose a model by AIC in a Stepwise Algorithm
|
||
> ### Aliases: stepAIC extractAIC.gls terms.gls extractAIC.lme terms.lme
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)
|
||
> quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
|
||
> quine.stp <- stepAIC(quine.nxt,
|
||
+ scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),
|
||
+ trace = FALSE)
|
||
> quine.stp$anova
|
||
Stepwise Model Path
|
||
Analysis of Deviance Table
|
||
|
||
Initial Model:
|
||
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age +
|
||
Eth:Lrn + Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Age + Eth:Sex:Lrn +
|
||
Eth:Age:Lrn + Sex:Age:Lrn
|
||
|
||
Final Model:
|
||
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age +
|
||
Eth:Lrn + Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Lrn + Eth:Age:Lrn
|
||
|
||
|
||
Step Df Deviance Resid. Df Resid. Dev AIC
|
||
1 120 64.09900 -68.18396
|
||
2 - Eth:Sex:Age 3 0.973869 123 65.07287 -71.98244
|
||
3 - Sex:Age:Lrn 2 1.526754 125 66.59962 -72.59652
|
||
>
|
||
> cpus1 <- cpus
|
||
> for(v in names(cpus)[2:7])
|
||
+ cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
|
||
+ include.lowest = TRUE)
|
||
> cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
|
||
> cpus.samp <- sample(1:209, 100)
|
||
> cpus.lm <- lm(log10(perf) ~ ., data = cpus1[cpus.samp,2:8])
|
||
> cpus.lm2 <- stepAIC(cpus.lm, trace = FALSE)
|
||
> cpus.lm2$anova
|
||
Stepwise Model Path
|
||
Analysis of Deviance Table
|
||
|
||
Initial Model:
|
||
log10(perf) ~ syct + mmin + mmax + cach + chmin + chmax
|
||
|
||
Final Model:
|
||
log10(perf) ~ syct + mmax + cach + chmax
|
||
|
||
|
||
Step Df Deviance Resid. Df Resid. Dev AIC
|
||
1 82 3.458189 -300.4425
|
||
2 - chmin 3 0.02548983 85 3.483679 -305.7081
|
||
3 - mmin 3 0.12039102 88 3.604070 -308.3106
|
||
>
|
||
> example(birthwt)
|
||
|
||
brthwt> bwt <- with(birthwt, {
|
||
brthwt+ race <- factor(race, labels = c("white", "black", "other"))
|
||
brthwt+ ptd <- factor(ptl > 0)
|
||
brthwt+ ftv <- factor(ftv)
|
||
brthwt+ levels(ftv)[-(1:2)] <- "2+"
|
||
brthwt+ data.frame(low = factor(low), age, lwt, race, smoke = (smoke > 0),
|
||
brthwt+ ptd, ht = (ht > 0), ui = (ui > 0), ftv)
|
||
brthwt+ })
|
||
|
||
brthwt> options(contrasts = c("contr.treatment", "contr.poly"))
|
||
|
||
brthwt> glm(low ~ ., binomial, bwt)
|
||
|
||
Call: glm(formula = low ~ ., family = binomial, data = bwt)
|
||
|
||
Coefficients:
|
||
(Intercept) age lwt raceblack raceother smokeTRUE
|
||
0.82302 -0.03723 -0.01565 1.19241 0.74068 0.75553
|
||
ptdTRUE htTRUE uiTRUE ftv1 ftv2+
|
||
1.34376 1.91317 0.68020 -0.43638 0.17901
|
||
|
||
Degrees of Freedom: 188 Total (i.e. Null); 178 Residual
|
||
Null Deviance: 234.7
|
||
Residual Deviance: 195.5 AIC: 217.5
|
||
> birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
|
||
> birthwt.step <- stepAIC(birthwt.glm, trace = FALSE)
|
||
> birthwt.step$anova
|
||
Stepwise Model Path
|
||
Analysis of Deviance Table
|
||
|
||
Initial Model:
|
||
low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
|
||
|
||
Final Model:
|
||
low ~ lwt + race + smoke + ptd + ht + ui
|
||
|
||
|
||
Step Df Deviance Resid. Df Resid. Dev AIC
|
||
1 178 195.4755 217.4755
|
||
2 - ftv 2 1.358185 180 196.8337 214.8337
|
||
3 - age 1 1.017866 181 197.8516 213.8516
|
||
> birthwt.step2 <- stepAIC(birthwt.glm, ~ .^2 + I(scale(age)^2)
|
||
+ + I(scale(lwt)^2), trace = FALSE)
|
||
> birthwt.step2$anova
|
||
Stepwise Model Path
|
||
Analysis of Deviance Table
|
||
|
||
Initial Model:
|
||
low ~ age + lwt + race + smoke + ptd + ht + ui + ftv
|
||
|
||
Final Model:
|
||
low ~ age + lwt + smoke + ptd + ht + ui + ftv + age:ftv + smoke:ui
|
||
|
||
|
||
Step Df Deviance Resid. Df Resid. Dev AIC
|
||
1 178 195.4755 217.4755
|
||
2 + age:ftv 2 12.474896 176 183.0006 209.0006
|
||
3 + smoke:ui 1 3.056805 175 179.9438 207.9438
|
||
4 - race 2 3.129586 177 183.0734 207.0734
|
||
>
|
||
> quine.nb <- glm.nb(Days ~ .^4, data = quine)
|
||
> quine.nb2 <- stepAIC(quine.nb)
|
||
Start: AIC=1095.32
|
||
Days ~ (Eth + Sex + Age + Lrn)^4
|
||
|
||
Df AIC
|
||
- Eth:Sex:Age:Lrn 2 1092.7
|
||
<none> 1095.3
|
||
|
||
Step: AIC=1092.73
|
||
Days ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age + Eth:Lrn +
|
||
Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Age + Eth:Sex:Lrn +
|
||
Eth:Age:Lrn + Sex:Age:Lrn
|
||
|
||
Df AIC
|
||
- Eth:Sex:Age 3 1089.4
|
||
<none> 1092.7
|
||
- Eth:Sex:Lrn 1 1093.3
|
||
- Eth:Age:Lrn 2 1094.7
|
||
- Sex:Age:Lrn 2 1095.0
|
||
|
||
Step: AIC=1089.41
|
||
Days ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age + Eth:Lrn +
|
||
Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Lrn + Eth:Age:Lrn +
|
||
Sex:Age:Lrn
|
||
|
||
Df AIC
|
||
<none> 1089.4
|
||
- Sex:Age:Lrn 2 1091.1
|
||
- Eth:Age:Lrn 2 1091.2
|
||
- Eth:Sex:Lrn 1 1092.5
|
||
> quine.nb2$anova
|
||
Stepwise Model Path
|
||
Analysis of Deviance Table
|
||
|
||
Initial Model:
|
||
Days ~ (Eth + Sex + Age + Lrn)^4
|
||
|
||
Final Model:
|
||
Days ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Age + Eth:Lrn +
|
||
Sex:Age + Sex:Lrn + Age:Lrn + Eth:Sex:Lrn + Eth:Age:Lrn +
|
||
Sex:Age:Lrn
|
||
|
||
|
||
Step Df Deviance Resid. Df Resid. Dev AIC
|
||
1 118 167.4535 1095.324
|
||
2 - Eth:Sex:Age:Lrn 2 0.09746244 120 167.5509 1092.728
|
||
3 - Eth:Sex:Age 3 0.11060087 123 167.4403 1089.409
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("summary.negbin")
|
||
> ### * summary.negbin
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: summary.negbin
|
||
> ### Title: Summary Method Function for Objects of Class 'negbin'
|
||
> ### Aliases: summary.negbin print.summary.negbin
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(glm.nb(Days ~ Eth*Age*Lrn*Sex, quine, link = log))
|
||
|
||
Call:
|
||
glm.nb(formula = Days ~ Eth * Age * Lrn * Sex, data = quine,
|
||
link = log, init.theta = 1.928360145)
|
||
|
||
Coefficients: (4 not defined because of singularities)
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) 3.0564 0.3760 8.128 4.38e-16 ***
|
||
EthN -0.1386 0.5334 -0.260 0.795023
|
||
AgeF1 -0.6227 0.5125 -1.215 0.224334
|
||
AgeF2 -2.3632 1.0770 -2.194 0.028221 *
|
||
AgeF3 -0.3784 0.4546 -0.832 0.405215
|
||
LrnSL -1.9577 0.9967 -1.964 0.049493 *
|
||
SexM -0.4914 0.5104 -0.963 0.335653
|
||
EthN:AgeF1 0.1029 0.7123 0.144 0.885175
|
||
EthN:AgeF2 -0.5546 1.6798 -0.330 0.741297
|
||
EthN:AgeF3 0.0633 0.6396 0.099 0.921159
|
||
EthN:LrnSL 2.2588 1.3019 1.735 0.082743 .
|
||
AgeF1:LrnSL 2.6421 1.0821 2.442 0.014618 *
|
||
AgeF2:LrnSL 4.8585 1.4423 3.369 0.000755 ***
|
||
AgeF3:LrnSL NA NA NA NA
|
||
EthN:SexM -0.7524 0.7220 -1.042 0.297400
|
||
AgeF1:SexM 0.4092 0.8299 0.493 0.621973
|
||
AgeF2:SexM 3.1098 1.1655 2.668 0.007624 **
|
||
AgeF3:SexM 1.1145 0.6365 1.751 0.079926 .
|
||
LrnSL:SexM 1.5900 1.1499 1.383 0.166750
|
||
EthN:AgeF1:LrnSL -3.5493 1.4270 -2.487 0.012876 *
|
||
EthN:AgeF2:LrnSL -3.3315 2.0919 -1.593 0.111256
|
||
EthN:AgeF3:LrnSL NA NA NA NA
|
||
EthN:AgeF1:SexM -0.3105 1.2055 -0.258 0.796735
|
||
EthN:AgeF2:SexM 0.3469 1.7965 0.193 0.846875
|
||
EthN:AgeF3:SexM 0.8329 0.8970 0.929 0.353092
|
||
EthN:LrnSL:SexM -0.1639 1.5250 -0.107 0.914411
|
||
AgeF1:LrnSL:SexM -2.4285 1.4201 -1.710 0.087246 .
|
||
AgeF2:LrnSL:SexM -4.1914 1.6201 -2.587 0.009679 **
|
||
AgeF3:LrnSL:SexM NA NA NA NA
|
||
EthN:AgeF1:LrnSL:SexM 2.1711 1.9192 1.131 0.257963
|
||
EthN:AgeF2:LrnSL:SexM 2.1029 2.3444 0.897 0.369718
|
||
EthN:AgeF3:LrnSL:SexM NA NA NA NA
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for Negative Binomial(1.9284) family taken to be 1)
|
||
|
||
Null deviance: 272.29 on 145 degrees of freedom
|
||
Residual deviance: 167.45 on 118 degrees of freedom
|
||
AIC: 1097.3
|
||
|
||
Number of Fisher Scoring iterations: 1
|
||
|
||
|
||
Theta: 1.928
|
||
Std. Err.: 0.269
|
||
|
||
2 x log-likelihood: -1039.324
|
||
> ## IGNORE_RDIFF_END
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("summary.rlm")
|
||
> ### * summary.rlm
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: summary.rlm
|
||
> ### Title: Summary Method for Robust Linear Models
|
||
> ### Aliases: summary.rlm print.summary.rlm
|
||
> ### Keywords: robust
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> summary(rlm(calls ~ year, data = phones, maxit = 50))
|
||
|
||
Call: rlm(formula = calls ~ year, data = phones, maxit = 50)
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-18.314 -5.953 -1.681 26.460 173.769
|
||
|
||
Coefficients:
|
||
Value Std. Error t value
|
||
(Intercept) -102.6222 26.6082 -3.8568
|
||
year 2.0414 0.4299 4.7480
|
||
|
||
Residual standard error: 9.032 on 22 degrees of freedom
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("theta.md")
|
||
> ### * theta.md
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: theta.md
|
||
> ### Title: Estimate theta of the Negative Binomial
|
||
> ### Aliases: theta.md theta.ml theta.mm
|
||
> ### Keywords: models
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> quine.nb <- glm.nb(Days ~ .^2, data = quine)
|
||
> theta.md(quine$Days, fitted(quine.nb), dfr = df.residual(quine.nb))
|
||
[1] 1.135441
|
||
> theta.ml(quine$Days, fitted(quine.nb))
|
||
[1] 1.603641
|
||
attr(,"SE")
|
||
[1] 0.2138379
|
||
> theta.mm(quine$Days, fitted(quine.nb), dfr = df.residual(quine.nb))
|
||
[1] 1.562879
|
||
>
|
||
> ## weighted example
|
||
> yeast <- data.frame(cbind(numbers = 0:5, fr = c(213, 128, 37, 18, 3, 1)))
|
||
> fit <- glm.nb(numbers ~ 1, weights = fr, data = yeast)
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> summary(fit)
|
||
|
||
Call:
|
||
glm.nb(formula = numbers ~ 1, data = yeast, weights = fr, init.theta = 3.586087428,
|
||
link = log)
|
||
|
||
Coefficients:
|
||
Estimate Std. Error z value Pr(>|z|)
|
||
(Intercept) -0.38199 0.06603 -5.785 7.25e-09 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
(Dispersion parameter for Negative Binomial(3.5861) family taken to be 1)
|
||
|
||
Null deviance: 408.9 on 5 degrees of freedom
|
||
Residual deviance: 408.9 on 5 degrees of freedom
|
||
AIC: 897.06
|
||
|
||
Number of Fisher Scoring iterations: 1
|
||
|
||
|
||
Theta: 3.59
|
||
Std. Err.: 1.75
|
||
|
||
2 x log-likelihood: -893.063
|
||
> ## IGNORE_RDIFF_END
|
||
> mu <- fitted(fit)
|
||
> theta.md(yeast$numbers, mu, dfr = 399, weights = yeast$fr)
|
||
[1] 3.027079
|
||
> theta.ml(yeast$numbers, mu, limit = 15, weights = yeast$fr)
|
||
[1] 3.586087
|
||
attr(,"SE")
|
||
[1] 1.749609
|
||
> theta.mm(yeast$numbers, mu, dfr = 399, weights = yeast$fr)
|
||
[1] 3.549593
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("ucv")
|
||
> ### * ucv
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: ucv
|
||
> ### Title: Unbiased Cross-Validation for Bandwidth Selection
|
||
> ### Aliases: ucv
|
||
> ### Keywords: dplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ucv(geyser$duration)
|
||
Warning in ucv(geyser$duration) :
|
||
minimum occurred at one end of the range
|
||
[1] 0.1746726
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("waders")
|
||
> ### * waders
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: waders
|
||
> ### Title: Counts of Waders at 15 Sites in South Africa
|
||
> ### Aliases: waders
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> plot(corresp(waders, nf=2))
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("whiteside")
|
||
> ### * whiteside
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: whiteside
|
||
> ### Title: House Insulation: Whiteside's Data
|
||
> ### Aliases: whiteside
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> require(lattice)
|
||
Loading required package: lattice
|
||
> xyplot(Gas ~ Temp | Insul, whiteside, panel =
|
||
+ function(x, y, ...) {
|
||
+ panel.xyplot(x, y, ...)
|
||
+ panel.lmline(x, y, ...)
|
||
+ }, xlab = "Average external temperature (deg. C)",
|
||
+ ylab = "Gas consumption (1000 cubic feet)", aspect = "xy",
|
||
+ strip = function(...) strip.default(..., style = 1))
|
||
>
|
||
> gasB <- lm(Gas ~ Temp, whiteside, subset = Insul=="Before")
|
||
> gasA <- update(gasB, subset = Insul=="After")
|
||
> summary(gasB)
|
||
|
||
Call:
|
||
lm(formula = Gas ~ Temp, data = whiteside, subset = Insul ==
|
||
"Before")
|
||
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-0.62020 -0.19947 0.06068 0.16770 0.59778
|
||
|
||
Coefficients:
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
(Intercept) 6.85383 0.11842 57.88 <2e-16 ***
|
||
Temp -0.39324 0.01959 -20.08 <2e-16 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Residual standard error: 0.2813 on 24 degrees of freedom
|
||
Multiple R-squared: 0.9438, Adjusted R-squared: 0.9415
|
||
F-statistic: 403.1 on 1 and 24 DF, p-value: < 2.2e-16
|
||
|
||
> summary(gasA)
|
||
|
||
Call:
|
||
lm(formula = Gas ~ Temp, data = whiteside, subset = Insul ==
|
||
"After")
|
||
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-0.97802 -0.11082 0.02672 0.25294 0.63803
|
||
|
||
Coefficients:
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
(Intercept) 4.72385 0.12974 36.41 < 2e-16 ***
|
||
Temp -0.27793 0.02518 -11.04 1.05e-11 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Residual standard error: 0.3548 on 28 degrees of freedom
|
||
Multiple R-squared: 0.8131, Adjusted R-squared: 0.8064
|
||
F-statistic: 121.8 on 1 and 28 DF, p-value: 1.046e-11
|
||
|
||
> gasBA <- lm(Gas ~ Insul/Temp - 1, whiteside)
|
||
> summary(gasBA)
|
||
|
||
Call:
|
||
lm(formula = Gas ~ Insul/Temp - 1, data = whiteside)
|
||
|
||
Residuals:
|
||
Min 1Q Median 3Q Max
|
||
-0.97802 -0.18011 0.03757 0.20930 0.63803
|
||
|
||
Coefficients:
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
InsulBefore 6.85383 0.13596 50.41 <2e-16 ***
|
||
InsulAfter 4.72385 0.11810 40.00 <2e-16 ***
|
||
InsulBefore:Temp -0.39324 0.02249 -17.49 <2e-16 ***
|
||
InsulAfter:Temp -0.27793 0.02292 -12.12 <2e-16 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
|
||
Residual standard error: 0.323 on 52 degrees of freedom
|
||
Multiple R-squared: 0.9946, Adjusted R-squared: 0.9942
|
||
F-statistic: 2391 on 4 and 52 DF, p-value: < 2.2e-16
|
||
|
||
>
|
||
> gasQ <- lm(Gas ~ Insul/(Temp + I(Temp^2)) - 1, whiteside)
|
||
> coef(summary(gasQ))
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
InsulBefore 6.759215179 0.150786777 44.826312 4.854615e-42
|
||
InsulAfter 4.496373920 0.160667904 27.985514 3.302572e-32
|
||
InsulBefore:Temp -0.317658735 0.062965170 -5.044991 6.362323e-06
|
||
InsulAfter:Temp -0.137901603 0.073058019 -1.887563 6.489554e-02
|
||
InsulBefore:I(Temp^2) -0.008472572 0.006624737 -1.278930 2.068259e-01
|
||
InsulAfter:I(Temp^2) -0.014979455 0.007447107 -2.011446 4.968398e-02
|
||
>
|
||
> gasPR <- lm(Gas ~ Insul + Temp, whiteside)
|
||
> anova(gasPR, gasBA)
|
||
Analysis of Variance Table
|
||
|
||
Model 1: Gas ~ Insul + Temp
|
||
Model 2: Gas ~ Insul/Temp - 1
|
||
Res.Df RSS Df Sum of Sq F Pr(>F)
|
||
1 53 6.7704
|
||
2 52 5.4252 1 1.3451 12.893 0.0007307 ***
|
||
---
|
||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
|
||
> options(contrasts = c("contr.treatment", "contr.poly"))
|
||
> gasBA1 <- lm(Gas ~ Insul*Temp, whiteside)
|
||
> coef(summary(gasBA1))
|
||
Estimate Std. Error t value Pr(>|t|)
|
||
(Intercept) 6.8538277 0.13596397 50.409146 7.997414e-46
|
||
InsulAfter -2.1299780 0.18009172 -11.827185 2.315921e-16
|
||
Temp -0.3932388 0.02248703 -17.487358 1.976009e-23
|
||
InsulAfter:Temp 0.1153039 0.03211212 3.590665 7.306852e-04
|
||
>
|
||
>
|
||
>
|
||
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
|
||
> cleanEx()
|
||
|
||
detaching ‘package:lattice’
|
||
|
||
> nameEx("width.SJ")
|
||
> ### * width.SJ
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: width.SJ
|
||
> ### Title: Bandwidth Selection by Pilot Estimation of Derivatives
|
||
> ### Aliases: width.SJ
|
||
> ### Keywords: dplot
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> width.SJ(geyser$duration, method = "dpi")
|
||
[1] 0.5747852
|
||
> width.SJ(geyser$duration)
|
||
[1] 0.360518
|
||
>
|
||
> width.SJ(galaxies, method = "dpi")
|
||
[1] 3256.151
|
||
> width.SJ(galaxies)
|
||
[1] 2566.423
|
||
>
|
||
>
|
||
>
|
||
> cleanEx()
|
||
> nameEx("wtloss")
|
||
> ### * wtloss
|
||
>
|
||
> flush(stderr()); flush(stdout())
|
||
>
|
||
> ### Name: wtloss
|
||
> ### Title: Weight Loss Data from an Obese Patient
|
||
> ### Aliases: wtloss
|
||
> ### Keywords: datasets
|
||
>
|
||
> ### ** Examples
|
||
>
|
||
> ## IGNORE_RDIFF_BEGIN
|
||
> wtloss.fm <- nls(Weight ~ b0 + b1*2^(-Days/th),
|
||
+ data = wtloss, start = list(b0=90, b1=95, th=120))
|
||
> wtloss.fm
|
||
Nonlinear regression model
|
||
model: Weight ~ b0 + b1 * 2^(-Days/th)
|
||
data: wtloss
|
||
b0 b1 th
|
||
81.37 102.68 141.91
|
||
residual sum-of-squares: 39.24
|
||
|
||
Number of iterations to convergence: 3
|
||
Achieved convergence tolerance: 4.389e-06
|
||
> ## IGNORE_RDIFF_END
|
||
> plot(wtloss)
|
||
> with(wtloss, lines(Days, fitted(wtloss.fm)))
|
||
>
|
||
>
|
||
>
|
||
> ### * <FOOTER>
|
||
> ###
|
||
> cleanEx()
|
||
> options(digits = 7L)
|
||
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
|
||
Time elapsed: 2.902 0.152 3.684 0 0
|
||
> grDevices::dev.off()
|
||
null device
|
||
1
|
||
> ###
|
||
> ### Local variables: ***
|
||
> ### mode: outline-minor ***
|
||
> ### outline-regexp: "\\(> \\)?### [*]+" ***
|
||
> ### End: ***
|
||
> quit('no')
|