179 lines
6.2 KiB
Plaintext
179 lines
6.2 KiB
Plaintext
|
|
R Under development (unstable) (2024-04-17 r86441) -- "Unsuffered Consequences"
|
|
Copyright (C) 2024 The R Foundation for Statistical Computing
|
|
Platform: aarch64-unknown-linux-gnu
|
|
|
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
|
You are welcome to redistribute it under certain conditions.
|
|
Type 'license()' or 'licence()' for distribution details.
|
|
|
|
R is a collaborative project with many contributors.
|
|
Type 'contributors()' for more information and
|
|
'citation()' on how to cite R or R packages in publications.
|
|
|
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
|
'help.start()' for an HTML browser interface to help.
|
|
Type 'q()' to quit R.
|
|
|
|
> library(survival)
|
|
> options(na.action=na.exclude)
|
|
> aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...)
|
|
>
|
|
> # Make sure strata is retained, and that the overall variance is correct
|
|
> fit1 <- coxph(Surv(time, status) ~ age + offset(ph.ecog*0) +strata(sex), lung)
|
|
> fit2 <- coxph(Surv(time, status) ~ age + ph.ecog +strata(sex), lung)
|
|
>
|
|
> test <- concordance(fit1, fit2, influence=1)
|
|
>
|
|
> ksex <- model.frame(fit1)[["strata(sex)"]]
|
|
> test1 <- concordance(fit1$y ~ fit1$linear.predictors + strata(ksex),
|
|
+ reverse=TRUE, influence=1)
|
|
> test2 <- concordance(fit1$y ~ fit2$linear.predictors + strata(ksex),
|
|
+ reverse=TRUE, influence=1)
|
|
> aeq(test$concordance, c(test1$concordance, test2$concordance))
|
|
[1] TRUE
|
|
> aeq(diag(test$var), c(test1$var[1], test2$var[1]))
|
|
[1] TRUE
|
|
> aeq(test$dfbeta, cbind(test1$dfbeta, test2$dfbeta))
|
|
[1] TRUE
|
|
>
|
|
> cvec <- c(-1, 1)
|
|
> aeq(cvec %*% test$var %*% cvec, sum((test1$dfbeta - test2$dfbeta)^2))
|
|
[1] TRUE
|
|
>
|
|
> # Time weights
|
|
> # Start with a very small data set: aml has 23 subjects
|
|
> #
|
|
> atest1 <- concordance(Surv(time, status) ~ x, aml, ranks=TRUE)
|
|
> atest2 <- concordance(Surv(time, status) ~ x, aml, ranks=TRUE, timewt='S')
|
|
> atest3 <- concordance(Surv(time, status) ~ x, aml, ranks=TRUE, timewt='S/G')
|
|
> atest4 <- concordance(Surv(time, status) ~ x, aml, ranks=TRUE, timewt='n/G2')
|
|
> # The ranks data frame agrees for all but weights
|
|
> all.equal(atest1$ranks[, -3], atest2$ranks[, -3])
|
|
[1] TRUE
|
|
> all.equal(atest1$ranks[, -3], atest3$ranks[, -3])
|
|
[1] TRUE
|
|
> all.equal(atest1$ranks[, -3], atest4$ranks[, -3])
|
|
[1] TRUE
|
|
>
|
|
> wt1 <- cbind(atest1$ranks[,"timewt"], atest2$ranks[,"timewt"],
|
|
+ atest3$ranks[,"timewt"], atest4$ranks[,"timewt"])
|
|
>
|
|
> # survfit0 adds time 0 to the curves
|
|
> # to break ties between censor/death for G, we need to add an offset to
|
|
> # the censoring times. Since time is integer, .1 works nicely
|
|
> s1 <- survfit0(survfit(Surv(time, status) ~ 1, aml))
|
|
> g1 <- survfit0(survfit(Surv(time + .1*(1-status), 1-status) ~1, aml))
|
|
>
|
|
> # The ingredients of the weights
|
|
> indx <- match(atest1$ranks[,"time"], s1$time)
|
|
> nrisk <- s1$n.risk[indx]
|
|
> sminus <- s1$surv[indx-1]
|
|
> gminus <- g1$surv[findInterval(atest1$ranks[,"time"], g1$time)]
|
|
> n <- nrow(aml)
|
|
>
|
|
> wt2 <- cbind(nrisk, n*sminus, n*sminus/gminus, nrisk/gminus^2)
|
|
> aeq(wt1, wt2)
|
|
[1] TRUE
|
|
>
|
|
> # The sum of weighted ranks should equal (C-D) for a Cox model fit
|
|
> tfun <- function(cfit, reverse=FALSE) {
|
|
+ t1 <- sum(cfit$ranks$timewt * cfit$ranks$rank)
|
|
+ t2 <- cfit$count[1] - cfit$count[2]
|
|
+ all.equal(unname(t1), unname(t2))
|
|
+ }
|
|
> tfun(atest1)
|
|
[1] TRUE
|
|
> tfun(atest2)
|
|
[1] TRUE
|
|
> tfun(atest3)
|
|
[1] TRUE
|
|
> tfun(atest4)
|
|
[1] TRUE
|
|
>
|
|
> # The nafld data set has strong and early censoring (one of the only ones
|
|
> # in the package that does.) So it is a good check of time weights.
|
|
> #
|
|
> nfit <- coxph(Surv(futime, status) ~ male + pspline(age), nafld1)
|
|
> cn1 <- concordance(nfit, timewt='n', ranks=TRUE)
|
|
> cn2 <- concordance(nfit, timewt='S', ranks=TRUE)
|
|
> cn3 <- concordance(nfit, timewt='S/G', ranks=TRUE)
|
|
> cn4 <- concordance(nfit, timewt='n/G2', ranks=TRUE)
|
|
>
|
|
> sfit <- survfit0(survfit(Surv(futime, status) ~ 1, nafld1))
|
|
> gfit <- survfit0(survfit(Surv(futime + .1*(status==0), 1-status) ~0, nafld1))
|
|
>
|
|
> # The ingredients of the weights
|
|
> dtime <- cn1$ranks[, "time"]
|
|
> indx <- match(dtime, sfit$time)
|
|
> nrisk <- sfit$n.risk[indx]
|
|
> sminus <- sfit$surv[indx-1]
|
|
> gminus <- gfit$surv[findInterval(dtime, gfit$time)]
|
|
> n <- nrow(nafld1)
|
|
>
|
|
> wt1 <- cbind(cn1$ranks[, "timewt"], cn2$ranks[,"timewt"],
|
|
+ cn3$ranks[, "timewt"], cn4$ranks[,"timewt"])
|
|
> wt2 <- cbind(nrisk, n*sminus, n*sminus/gminus, nrisk/gminus^2)
|
|
> aeq(wt1, wt2)
|
|
[1] TRUE
|
|
>
|
|
> rd1 <- cn1$ranks
|
|
> rd2 <- cn2$ranks
|
|
> rd3 <- cn3$ranks
|
|
> all.equal(rd1[c('time', 'rank', 'casewt')], rd2[c('time', 'rank', 'casewt')])
|
|
[1] TRUE
|
|
> all.equal(rd1[c('time', 'rank', 'casewt')], rd3[c('time', 'rank', 'casewt')])
|
|
[1] TRUE
|
|
>
|
|
> tfun(cn1)
|
|
[1] TRUE
|
|
> tfun(cn2)
|
|
[1] TRUE
|
|
> tfun(cn3)
|
|
[1] TRUE
|
|
> tfun(cn4)
|
|
[1] TRUE
|
|
>
|
|
> # Simple check of (time1, time2) data
|
|
> # First a check on the fastkm2 (internal) routine
|
|
> test1 <- survfit(Surv(tstart, tstop, status) ~1, cgd, id=id)
|
|
> nr <- nrow(cgd)
|
|
> y <- with(cgd, Surv(tstart,tstop, status))
|
|
> sort1 <- order(-cgd$tstart); sort2 <- order(-cgd$tstop, cgd$status)
|
|
> if (!exists("Cfastkm2")) Cfastkm2 <- survival:::Cfastkm2 # for my test env
|
|
> test2 <- .Call(Cfastkm2, y, rep(1.0, nr), order(-cgd$tstart)-1L,
|
|
+ order(-cgd$tstop, cgd$status) -1L)
|
|
> ii <- which(test1$n.event>0)
|
|
> all.equal(test1$time[ii], test2$etime)
|
|
[1] TRUE
|
|
> all.equal(test1$n.risk[ii], test2$nrisk)
|
|
[1] TRUE
|
|
> all.equal(c(1, test1$surv[ii[-length(ii)]]), test2$S) # test 2 is lagged
|
|
[1] TRUE
|
|
>
|
|
> zero <- rep(0, nrow(nafld1))
|
|
> test3 <- survfit(Surv(futime, status) ~1, nafld1, id=id)
|
|
> test4 <- with(nafld1, .Call(Cfastkm2, Surv(zero, futime, status), zero+1,
|
|
+ seq.int(nrow(nafld1)) -1L,
|
|
+ order(-futime, status) -1L))
|
|
> ii <- which(test3$n.event >0)
|
|
> all.equal(test3$time[ii], test4$etime)
|
|
[1] TRUE
|
|
> all.equal(test3$n.risk[ii], test4$nrisk)
|
|
[1] TRUE
|
|
> all.equal(c(1, test3$surv[ii[-length(ii)]]), test4$S) # test 2 is lagged
|
|
[1] TRUE
|
|
>
|
|
> # Now a check of concordance
|
|
> nfitx <- coxph(Surv(zero, futime, status) ~ male + pspline(age), nafld1)
|
|
> cn1x <- concordance(nfitx, timewt='n', ranks=TRUE)
|
|
> cn2x <- concordance(nfitx, timewt='S', ranks=TRUE)
|
|
> all.equal(cn1x$count, cn1$count)
|
|
[1] TRUE
|
|
> all.equal(cn2x$count, cn2$count)
|
|
[1] TRUE
|
|
>
|
|
> proc.time()
|
|
user system elapsed
|
|
0.710 0.023 0.731
|