87 lines
3.3 KiB
R
87 lines
3.3 KiB
R
### R code from vignette source 'approximate.Rnw'
|
|
|
|
###################################################
|
|
### code chunk number 1: init
|
|
###################################################
|
|
options(continue=" ", width=60)
|
|
options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1))))
|
|
pdf.options(pointsize=8) #text in graph about the same as regular text
|
|
library(survival, quietly=TRUE)
|
|
|
|
|
|
###################################################
|
|
### code chunk number 2: approx1
|
|
###################################################
|
|
getOption("SweaveHooks")[["fig"]]()
|
|
ksurv <- survfit(Surv(time, status) ~1, data=kidney)
|
|
plot(ksurv, fun="cumhaz", conf.int=FALSE, lwd=2,
|
|
xlab="Time since catheter insertion", ylab="Cumulative Hazard")
|
|
lines(c(0, 45, 500, 560), c(0, .55, 2.7, 4), col=2, lwd=2)
|
|
|
|
|
|
###################################################
|
|
### code chunk number 3: approx2
|
|
###################################################
|
|
kdata2 <- survSplit(Surv(time, status) ~., data=kidney, cut=c(45, 500),
|
|
episode="interval")
|
|
kfit1 <- coxph(Surv(time, status) ~ age + sex, kidney, ties='breslow')
|
|
|
|
kfit2 <- glm(status ~ age + sex + factor(interval) -1 +
|
|
offset(log(time-tstart)), family=poisson, data=kdata2)
|
|
|
|
cbind(Cox= summary(kfit1)$coefficients[,c(1,3)],
|
|
poisson = summary(kfit2)$coefficients[1:2, 1:2])
|
|
|
|
|
|
###################################################
|
|
### code chunk number 4: approx3
|
|
###################################################
|
|
utime <- sort(unique(kidney$time[kidney$status==1])) # unique deaths
|
|
kdata3 <- survSplit(Surv(time, status) ~., data=kidney, cut=utime,
|
|
episode="interval")
|
|
kdata3 <- subset(kdata3, time == c(utime,0)[interval]) # remove partials
|
|
|
|
kfit3 <- glm(status ~ age + sex + factor(interval) -1,
|
|
family=poisson, data=kdata3)
|
|
kfit4 <- glm(status ~ age + sex + factor(interval) -1,
|
|
family=binomial, data=kdata3)
|
|
rbind(poisson= coef(kfit3)[1:2], binomial = coef(kfit4)[1:2])
|
|
|
|
|
|
###################################################
|
|
### code chunk number 5: approx4
|
|
###################################################
|
|
getOption("SweaveHooks")[["fig"]]()
|
|
counts <- c(table(kdata3$interval)) # subjects in each interval
|
|
xmat <- as.matrix(kdata3[,c('age', 'sex')])
|
|
centers <- rowsum(xmat, kdata3$interval) / counts
|
|
xmat2 <- xmat - centers[kdata3$interval,]
|
|
|
|
kfit4a <- glm(status ~ xmat2 + factor(interval) -1, poisson, kdata3)
|
|
temp <- coef(kfit4a)[-(1:2)] # intercepts
|
|
phat <- with(kdata3, tapply(status, interval, sum)) /counts
|
|
matplot(1:length(counts), cbind(phat, exp(temp)), log='y',
|
|
xlab="Interval", ylab="Simple event rate")
|
|
legend(5, .5, c("Rate", "Poisson intercept"), pch="12", col=1:2)
|
|
|
|
|
|
###################################################
|
|
### code chunk number 6: approx5
|
|
###################################################
|
|
kdata3$phat <- phat[kdata3$interval] # add phat to the data set
|
|
logit <- function(x) log(x/(1-x))
|
|
kfit4b <- glm(status ~ xmat2 + offset(log(phat)), poisson, kdata3)
|
|
kfit4c <- glm(status ~ xmat2, poisson, kdata3)
|
|
|
|
kfit4d <- glm(status ~ xmat2 + offset(logit(phat)), binomial, kdata3,
|
|
subset=(phat<1))
|
|
kfit4e <- glm(status ~ xmat2, binomial, kdata3,
|
|
subset=(phat<1))
|
|
|
|
rbind(Cox= coef(kfit1), poisson=coef(kfit4a)[1:2],
|
|
poisson2 = coef(kfit4b)[2:3], poisson3 = coef(kfit4c)[2:3],
|
|
binomial2 = coef(kfit4d)[2:3], binomial3 = coef(kfit4e)[2:3])
|
|
|
|
|
|
|