620 lines
360 KiB
HTML
620 lines
360 KiB
HTML
<!DOCTYPE html>
|
||
|
||
<html>
|
||
|
||
<head>
|
||
|
||
<meta charset="utf-8" />
|
||
<meta name="generator" content="pandoc" />
|
||
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||
|
||
|
||
|
||
<title>Aesthetic specifications</title>
|
||
|
||
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
|
||
// be compatible with the behavior of Pandoc < 2.8).
|
||
document.addEventListener('DOMContentLoaded', function(e) {
|
||
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
|
||
var i, h, a;
|
||
for (i = 0; i < hs.length; i++) {
|
||
h = hs[i];
|
||
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
|
||
a = h.attributes;
|
||
while (a.length > 0) h.removeAttribute(a[0].name);
|
||
}
|
||
});
|
||
</script>
|
||
|
||
<style type="text/css">
|
||
code{white-space: pre-wrap;}
|
||
span.smallcaps{font-variant: small-caps;}
|
||
span.underline{text-decoration: underline;}
|
||
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
||
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
||
ul.task-list{list-style: none;}
|
||
</style>
|
||
|
||
|
||
|
||
<style type="text/css">
|
||
code {
|
||
white-space: pre;
|
||
}
|
||
.sourceCode {
|
||
overflow: visible;
|
||
}
|
||
</style>
|
||
<style type="text/css" data-origin="pandoc">
|
||
pre > code.sourceCode { white-space: pre; position: relative; }
|
||
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
|
||
pre > code.sourceCode > span:empty { height: 1.2em; }
|
||
.sourceCode { overflow: visible; }
|
||
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
||
div.sourceCode { margin: 1em 0; }
|
||
pre.sourceCode { margin: 0; }
|
||
@media screen {
|
||
div.sourceCode { overflow: auto; }
|
||
}
|
||
@media print {
|
||
pre > code.sourceCode { white-space: pre-wrap; }
|
||
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
||
}
|
||
pre.numberSource code
|
||
{ counter-reset: source-line 0; }
|
||
pre.numberSource code > span
|
||
{ position: relative; left: -4em; counter-increment: source-line; }
|
||
pre.numberSource code > span > a:first-child::before
|
||
{ content: counter(source-line);
|
||
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
||
border: none; display: inline-block;
|
||
-webkit-touch-callout: none; -webkit-user-select: none;
|
||
-khtml-user-select: none; -moz-user-select: none;
|
||
-ms-user-select: none; user-select: none;
|
||
padding: 0 4px; width: 4em;
|
||
color: #aaaaaa;
|
||
}
|
||
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
||
div.sourceCode
|
||
{ }
|
||
@media screen {
|
||
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
||
}
|
||
code span.al { color: #ff0000; font-weight: bold; }
|
||
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
|
||
code span.at { color: #7d9029; }
|
||
code span.bn { color: #40a070; }
|
||
code span.bu { color: #008000; }
|
||
code span.cf { color: #007020; font-weight: bold; }
|
||
code span.ch { color: #4070a0; }
|
||
code span.cn { color: #880000; }
|
||
code span.co { color: #60a0b0; font-style: italic; }
|
||
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
|
||
code span.do { color: #ba2121; font-style: italic; }
|
||
code span.dt { color: #902000; }
|
||
code span.dv { color: #40a070; }
|
||
code span.er { color: #ff0000; font-weight: bold; }
|
||
code span.ex { }
|
||
code span.fl { color: #40a070; }
|
||
code span.fu { color: #06287e; }
|
||
code span.im { color: #008000; font-weight: bold; }
|
||
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
|
||
code span.kw { color: #007020; font-weight: bold; }
|
||
code span.op { color: #666666; }
|
||
code span.ot { color: #007020; }
|
||
code span.pp { color: #bc7a00; }
|
||
code span.sc { color: #4070a0; }
|
||
code span.ss { color: #bb6688; }
|
||
code span.st { color: #4070a0; }
|
||
code span.va { color: #19177c; }
|
||
code span.vs { color: #4070a0; }
|
||
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
|
||
</style>
|
||
<script>
|
||
// apply pandoc div.sourceCode style to pre.sourceCode instead
|
||
(function() {
|
||
var sheets = document.styleSheets;
|
||
for (var i = 0; i < sheets.length; i++) {
|
||
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
|
||
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
|
||
var j = 0;
|
||
while (j < rules.length) {
|
||
var rule = rules[j];
|
||
// check if there is a div.sourceCode rule
|
||
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
|
||
j++;
|
||
continue;
|
||
}
|
||
var style = rule.style.cssText;
|
||
// check if color or background-color is set
|
||
if (rule.style.color === '' && rule.style.backgroundColor === '') {
|
||
j++;
|
||
continue;
|
||
}
|
||
// replace div.sourceCode by a pre.sourceCode rule
|
||
sheets[i].deleteRule(j);
|
||
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
|
||
}
|
||
}
|
||
})();
|
||
</script>
|
||
|
||
|
||
|
||
|
||
<style type="text/css">body {
|
||
background-color: #fff;
|
||
margin: 1em auto;
|
||
max-width: 700px;
|
||
overflow: visible;
|
||
padding-left: 2em;
|
||
padding-right: 2em;
|
||
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
|
||
font-size: 14px;
|
||
line-height: 1.35;
|
||
}
|
||
#TOC {
|
||
clear: both;
|
||
margin: 0 0 10px 10px;
|
||
padding: 4px;
|
||
width: 400px;
|
||
border: 1px solid #CCCCCC;
|
||
border-radius: 5px;
|
||
background-color: #f6f6f6;
|
||
font-size: 13px;
|
||
line-height: 1.3;
|
||
}
|
||
#TOC .toctitle {
|
||
font-weight: bold;
|
||
font-size: 15px;
|
||
margin-left: 5px;
|
||
}
|
||
#TOC ul {
|
||
padding-left: 40px;
|
||
margin-left: -1.5em;
|
||
margin-top: 5px;
|
||
margin-bottom: 5px;
|
||
}
|
||
#TOC ul ul {
|
||
margin-left: -2em;
|
||
}
|
||
#TOC li {
|
||
line-height: 16px;
|
||
}
|
||
table {
|
||
margin: 1em auto;
|
||
border-width: 1px;
|
||
border-color: #DDDDDD;
|
||
border-style: outset;
|
||
border-collapse: collapse;
|
||
}
|
||
table th {
|
||
border-width: 2px;
|
||
padding: 5px;
|
||
border-style: inset;
|
||
}
|
||
table td {
|
||
border-width: 1px;
|
||
border-style: inset;
|
||
line-height: 18px;
|
||
padding: 5px 5px;
|
||
}
|
||
table, table th, table td {
|
||
border-left-style: none;
|
||
border-right-style: none;
|
||
}
|
||
table thead, table tr.even {
|
||
background-color: #f7f7f7;
|
||
}
|
||
p {
|
||
margin: 0.5em 0;
|
||
}
|
||
blockquote {
|
||
background-color: #f6f6f6;
|
||
padding: 0.25em 0.75em;
|
||
}
|
||
hr {
|
||
border-style: solid;
|
||
border: none;
|
||
border-top: 1px solid #777;
|
||
margin: 28px 0;
|
||
}
|
||
dl {
|
||
margin-left: 0;
|
||
}
|
||
dl dd {
|
||
margin-bottom: 13px;
|
||
margin-left: 13px;
|
||
}
|
||
dl dt {
|
||
font-weight: bold;
|
||
}
|
||
ul {
|
||
margin-top: 0;
|
||
}
|
||
ul li {
|
||
list-style: circle outside;
|
||
}
|
||
ul ul {
|
||
margin-bottom: 0;
|
||
}
|
||
pre, code {
|
||
background-color: #f7f7f7;
|
||
border-radius: 3px;
|
||
color: #333;
|
||
white-space: pre-wrap;
|
||
}
|
||
pre {
|
||
border-radius: 3px;
|
||
margin: 5px 0px 10px 0px;
|
||
padding: 10px;
|
||
}
|
||
pre:not([class]) {
|
||
background-color: #f7f7f7;
|
||
}
|
||
code {
|
||
font-family: Consolas, Monaco, 'Courier New', monospace;
|
||
font-size: 85%;
|
||
}
|
||
p > code, li > code {
|
||
padding: 2px 0px;
|
||
}
|
||
div.figure {
|
||
text-align: center;
|
||
}
|
||
img {
|
||
background-color: #FFFFFF;
|
||
padding: 2px;
|
||
border: 1px solid #DDDDDD;
|
||
border-radius: 3px;
|
||
border: 1px solid #CCCCCC;
|
||
margin: 0 5px;
|
||
}
|
||
h1 {
|
||
margin-top: 0;
|
||
font-size: 35px;
|
||
line-height: 40px;
|
||
}
|
||
h2 {
|
||
border-bottom: 4px solid #f7f7f7;
|
||
padding-top: 10px;
|
||
padding-bottom: 2px;
|
||
font-size: 145%;
|
||
}
|
||
h3 {
|
||
border-bottom: 2px solid #f7f7f7;
|
||
padding-top: 10px;
|
||
font-size: 120%;
|
||
}
|
||
h4 {
|
||
border-bottom: 1px solid #f7f7f7;
|
||
margin-left: 8px;
|
||
font-size: 105%;
|
||
}
|
||
h5, h6 {
|
||
border-bottom: 1px solid #ccc;
|
||
font-size: 105%;
|
||
}
|
||
a {
|
||
color: #0033dd;
|
||
text-decoration: none;
|
||
}
|
||
a:hover {
|
||
color: #6666ff; }
|
||
a:visited {
|
||
color: #800080; }
|
||
a:visited:hover {
|
||
color: #BB00BB; }
|
||
a[href^="http:"] {
|
||
text-decoration: underline; }
|
||
a[href^="https:"] {
|
||
text-decoration: underline; }
|
||
|
||
code > span.kw { color: #555; font-weight: bold; }
|
||
code > span.dt { color: #902000; }
|
||
code > span.dv { color: #40a070; }
|
||
code > span.bn { color: #d14; }
|
||
code > span.fl { color: #d14; }
|
||
code > span.ch { color: #d14; }
|
||
code > span.st { color: #d14; }
|
||
code > span.co { color: #888888; font-style: italic; }
|
||
code > span.ot { color: #007020; }
|
||
code > span.al { color: #ff0000; font-weight: bold; }
|
||
code > span.fu { color: #900; font-weight: bold; }
|
||
code > span.er { color: #a61717; background-color: #e3d2d2; }
|
||
</style>
|
||
|
||
|
||
|
||
|
||
</head>
|
||
|
||
<body>
|
||
|
||
|
||
|
||
|
||
<h1 class="title toc-ignore">Aesthetic specifications</h1>
|
||
|
||
|
||
|
||
<p>This vignette summarises the various formats that grid drawing
|
||
functions take. Most of this information is available scattered
|
||
throughout the R documentation. This appendix brings it all together in
|
||
one place.</p>
|
||
<div id="colour-and-fill" class="section level2">
|
||
<h2>Colour and fill</h2>
|
||
<p>Almost every geom has either colour, fill, or both. Colours and fills
|
||
can be specified in the following ways:</p>
|
||
<ul>
|
||
<li><p>A <strong>name</strong>, e.g., <code>"red"</code>. R has 657
|
||
built-in named colours, which can be listed with
|
||
<code>colours()</code>.</p></li>
|
||
<li><p>An <strong>rgb specification</strong>, with a string of the form
|
||
<code>"#RRGGBB"</code> where each of the pairs <code>RR</code>,
|
||
<code>GG</code>, <code>BB</code> consists of two hexadecimal digits
|
||
giving a value in the range <code>00</code> to <code>FF</code></p>
|
||
<p>You can optionally make the colour transparent by using the form
|
||
<code>"#RRGGBBAA"</code>.</p></li>
|
||
<li><p>An <strong>NA</strong>, for a completely transparent
|
||
colour.</p></li>
|
||
<li><p>The <a href="https://github.com/cwickham/munsell">munsell</a>
|
||
package, by Charlotte Wickham, makes it easy to choose specific colours
|
||
using a system designed by Albert H. Munsell. If you invest a little in
|
||
learning the system, it provides a convenient way of specifying
|
||
aesthetically pleasing colours.</p>
|
||
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a>munsell<span class="sc">::</span><span class="fu">mnsl</span>(<span class="st">"5PB 5/10"</span>)</span>
|
||
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="co">#> [1] "#447DBF"</span></span></code></pre></div></li>
|
||
</ul>
|
||
</div>
|
||
<div id="lines" class="section level2">
|
||
<h2>Lines</h2>
|
||
<p>As well as <code>colour</code>, the appearance of a line is affected
|
||
by <code>linewidth</code>, <code>linetype</code>, <code>linejoin</code>
|
||
and <code>lineend</code>.</p>
|
||
<div id="sec:line-type-spec" class="section level3">
|
||
<h3>Line type</h3>
|
||
<p>Line types can be specified with:</p>
|
||
<ul>
|
||
<li><p>An <strong>integer</strong> or <strong>name</strong>: 0 = blank,
|
||
1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 =
|
||
twodash, as shown below:</p>
|
||
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>lty <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"solid"</span>, <span class="st">"dashed"</span>, <span class="st">"dotted"</span>, <span class="st">"dotdash"</span>, <span class="st">"longdash"</span>, <span class="st">"twodash"</span>)</span>
|
||
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>linetypes <span class="ot"><-</span> <span class="fu">data.frame</span>(</span>
|
||
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a> <span class="at">y =</span> <span class="fu">seq_along</span>(lty),</span>
|
||
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a> <span class="at">lty =</span> lty</span>
|
||
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a>) </span>
|
||
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="fu">ggplot</span>(linetypes, <span class="fu">aes</span>(<span class="dv">0</span>, y)) <span class="sc">+</span> </span>
|
||
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a> <span class="fu">geom_segment</span>(<span class="fu">aes</span>(<span class="at">xend =</span> <span class="dv">5</span>, <span class="at">yend =</span> y, <span class="at">linetype =</span> lty)) <span class="sc">+</span> </span>
|
||
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a> <span class="fu">scale_linetype_identity</span>() <span class="sc">+</span> </span>
|
||
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="fu">aes</span>(<span class="at">label =</span> lty), <span class="at">hjust =</span> <span class="dv">0</span>, <span class="at">nudge_y =</span> <span class="fl">0.2</span>) <span class="sc">+</span></span>
|
||
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a> <span class="fu">scale_x_continuous</span>(<span class="cn">NULL</span>, <span class="at">breaks =</span> <span class="cn">NULL</span>) <span class="sc">+</span> </span>
|
||
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a> <span class="fu">scale_y_reverse</span>(<span class="cn">NULL</span>, <span class="at">breaks =</span> <span class="cn">NULL</span>)</span></code></pre></div>
|
||
<p><img src="" alt="A series of 6 horizontal lines with different line types. From top-to-bottom they are titled 'solid', 'dashed', 'dotted', 'dotdash', 'longdash', 'twodash'." /></p></li>
|
||
<li><p>The lengths of on/off stretches of line. This is done with a
|
||
string containing 2, 4, 6, or 8 hexadecimal digits which give the
|
||
lengths of consecutive lengths. For example, the string
|
||
<code>"33"</code> specifies three units on followed by three off and
|
||
<code>"3313"</code> specifies three units on followed by three off
|
||
followed by one on and finally three off.</p>
|
||
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a>lty <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"11"</span>, <span class="st">"18"</span>, <span class="st">"1f"</span>, <span class="st">"81"</span>, <span class="st">"88"</span>, <span class="st">"8f"</span>, <span class="st">"f1"</span>, <span class="st">"f8"</span>, <span class="st">"ff"</span>)</span>
|
||
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a>linetypes <span class="ot"><-</span> <span class="fu">data.frame</span>(</span>
|
||
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a> <span class="at">y =</span> <span class="fu">seq_along</span>(lty),</span>
|
||
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a> <span class="at">lty =</span> lty</span>
|
||
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a>) </span>
|
||
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="fu">ggplot</span>(linetypes, <span class="fu">aes</span>(<span class="dv">0</span>, y)) <span class="sc">+</span> </span>
|
||
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a> <span class="fu">geom_segment</span>(<span class="fu">aes</span>(<span class="at">xend =</span> <span class="dv">5</span>, <span class="at">yend =</span> y, <span class="at">linetype =</span> lty)) <span class="sc">+</span> </span>
|
||
<span id="cb3-8"><a href="#cb3-8" tabindex="-1"></a> <span class="fu">scale_linetype_identity</span>() <span class="sc">+</span> </span>
|
||
<span id="cb3-9"><a href="#cb3-9" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="fu">aes</span>(<span class="at">label =</span> lty), <span class="at">hjust =</span> <span class="dv">0</span>, <span class="at">nudge_y =</span> <span class="fl">0.2</span>) <span class="sc">+</span></span>
|
||
<span id="cb3-10"><a href="#cb3-10" tabindex="-1"></a> <span class="fu">scale_x_continuous</span>(<span class="cn">NULL</span>, <span class="at">breaks =</span> <span class="cn">NULL</span>) <span class="sc">+</span> </span>
|
||
<span id="cb3-11"><a href="#cb3-11" tabindex="-1"></a> <span class="fu">scale_y_reverse</span>(<span class="cn">NULL</span>, <span class="at">breaks =</span> <span class="cn">NULL</span>)</span></code></pre></div>
|
||
<p><img src="" alt="A series of 9 horizontal lines with different line types. Each line is titled by two hexadecimal digits that determined the lengths of dashes and gaps." /></p>
|
||
<p>The five standard dash-dot line types described above correspond to
|
||
44, 13, 1343, 73, and 2262.</p></li>
|
||
</ul>
|
||
</div>
|
||
<div id="linewidth" class="section level3">
|
||
<h3>Linewidth</h3>
|
||
<p>Due to a historical error, the unit of linewidth is roughly 0.75 mm.
|
||
Making it exactly 1 mm would change a very large number of existing
|
||
plots, so we’re stuck with this mistake.</p>
|
||
</div>
|
||
<div id="line-endjoin-paramters" class="section level3">
|
||
<h3>Line end/join paramters</h3>
|
||
<ul>
|
||
<li><p>The appearance of the line end is controlled by the
|
||
<code>lineend</code> paramter, and can be one of “round”, “butt” (the
|
||
default), or “square”.</p>
|
||
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, <span class="at">y =</span> <span class="fu">c</span>(<span class="dv">4</span>, <span class="dv">1</span>, <span class="dv">9</span>))</span>
|
||
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>base <span class="ot"><-</span> <span class="fu">ggplot</span>(df, <span class="fu">aes</span>(x, y)) <span class="sc">+</span> <span class="fu">xlim</span>(<span class="fl">0.5</span>, <span class="fl">3.5</span>) <span class="sc">+</span> <span class="fu">ylim</span>(<span class="dv">0</span>, <span class="dv">10</span>)</span>
|
||
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a>base <span class="sc">+</span> </span>
|
||
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">10</span>) <span class="sc">+</span> </span>
|
||
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">1</span>, <span class="at">colour =</span> <span class="st">"red"</span>)</span>
|
||
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a></span>
|
||
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a>base <span class="sc">+</span> </span>
|
||
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">10</span>, <span class="at">lineend =</span> <span class="st">"round"</span>) <span class="sc">+</span> </span>
|
||
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">1</span>, <span class="at">colour =</span> <span class="st">"red"</span>)</span>
|
||
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a></span>
|
||
<span id="cb4-11"><a href="#cb4-11" tabindex="-1"></a>base <span class="sc">+</span> </span>
|
||
<span id="cb4-12"><a href="#cb4-12" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">10</span>, <span class="at">lineend =</span> <span class="st">"square"</span>) <span class="sc">+</span> </span>
|
||
<span id="cb4-13"><a href="#cb4-13" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">1</span>, <span class="at">colour =</span> <span class="st">"red"</span>)</span></code></pre></div>
|
||
<p><img src="" alt="A plot showing a line with an angle. A thinner red line is placed over a thicker black line. The black line ends where the red line ends." width="30%" /><img src="" alt="A plot showing a line with an angle. A thinner red line is placed over a thicker black line. The black line ends past where the red line ends, and ends in a semicircle." width="30%" /><img src="" alt="A plot showing a line with an angle. A thinner red line is placed over a thicker black line. The black line ends past where the red line ends, and ends in a square shape." width="30%" /></p></li>
|
||
<li><p>The appearance of line joins is controlled by
|
||
<code>linejoin</code> and can be one of “round” (the default), “mitre”,
|
||
or “bevel”.</p>
|
||
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, <span class="at">y =</span> <span class="fu">c</span>(<span class="dv">9</span>, <span class="dv">1</span>, <span class="dv">9</span>))</span>
|
||
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>base <span class="ot"><-</span> <span class="fu">ggplot</span>(df, <span class="fu">aes</span>(x, y)) <span class="sc">+</span> <span class="fu">ylim</span>(<span class="dv">0</span>, <span class="dv">10</span>)</span>
|
||
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a>base <span class="sc">+</span> </span>
|
||
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">10</span>) <span class="sc">+</span> </span>
|
||
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">1</span>, <span class="at">colour =</span> <span class="st">"red"</span>)</span>
|
||
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a></span>
|
||
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a>base <span class="sc">+</span> </span>
|
||
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">10</span>, <span class="at">linejoin =</span> <span class="st">"mitre"</span>) <span class="sc">+</span> </span>
|
||
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">1</span>, <span class="at">colour =</span> <span class="st">"red"</span>)</span>
|
||
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a></span>
|
||
<span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a>base <span class="sc">+</span> </span>
|
||
<span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">10</span>, <span class="at">linejoin =</span> <span class="st">"bevel"</span>) <span class="sc">+</span> </span>
|
||
<span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a> <span class="fu">geom_path</span>(<span class="at">linewidth =</span> <span class="dv">1</span>, <span class="at">colour =</span> <span class="st">"red"</span>)</span></code></pre></div>
|
||
<p><img src="" alt="A plot showing a thin red line on top of a thick black line shaped like the letter 'V'. The corner in the black V-shape is rounded." width="30%" /><img src="" alt="A plot showing a thin red line on top of a thick black line shaped like the letter 'V'. The corner in the black V-shape is sharp." width="30%" /><img src="" alt="A plot showing a thin red line on top of a thick black line shaped like the letter 'V'. A piece of the corner is cut off so that the two straight parts are connected by a horizontal part." width="30%" /></p></li>
|
||
</ul>
|
||
<p>Mitre joins are automatically converted to bevel joins whenever the
|
||
angle is too small (which would create a very long bevel). This is
|
||
controlled by the <code>linemitre</code> parameter which specifies the
|
||
maximum ratio between the line width and the length of the mitre.</p>
|
||
</div>
|
||
</div>
|
||
<div id="polygons" class="section level2">
|
||
<h2>Polygons</h2>
|
||
<p>The border of the polygon is controlled by the <code>colour</code>,
|
||
<code>linetype</code>, and <code>linewidth</code> aesthetics as
|
||
described above. The inside is controlled by <code>fill</code>.</p>
|
||
</div>
|
||
<div id="point" class="section level2">
|
||
<h2>Point</h2>
|
||
<div id="sec:shape-spec" class="section level3">
|
||
<h3>Shape</h3>
|
||
<p>Shapes take five types of values:</p>
|
||
<ul>
|
||
<li><p>An <strong>integer</strong> in <span class="math inline">\([0,
|
||
25]\)</span>:</p>
|
||
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>shapes <span class="ot"><-</span> <span class="fu">data.frame</span>(</span>
|
||
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a> <span class="at">shape =</span> <span class="fu">c</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">19</span>, <span class="dv">22</span>, <span class="dv">21</span>, <span class="dv">24</span>, <span class="dv">23</span>, <span class="dv">20</span>),</span>
|
||
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a> <span class="at">x =</span> <span class="dv">0</span><span class="sc">:</span><span class="dv">24</span> <span class="sc">%/%</span> <span class="dv">5</span>,</span>
|
||
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a> <span class="at">y =</span> <span class="sc">-</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">24</span> <span class="sc">%%</span> <span class="dv">5</span>)</span>
|
||
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>)</span>
|
||
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="fu">ggplot</span>(shapes, <span class="fu">aes</span>(x, y)) <span class="sc">+</span> </span>
|
||
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">shape =</span> shape), <span class="at">size =</span> <span class="dv">5</span>, <span class="at">fill =</span> <span class="st">"red"</span>) <span class="sc">+</span></span>
|
||
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="fu">aes</span>(<span class="at">label =</span> shape), <span class="at">hjust =</span> <span class="dv">0</span>, <span class="at">nudge_x =</span> <span class="fl">0.15</span>) <span class="sc">+</span></span>
|
||
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a> <span class="fu">scale_shape_identity</span>() <span class="sc">+</span></span>
|
||
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a> <span class="fu">expand_limits</span>(<span class="at">x =</span> <span class="fl">4.1</span>) <span class="sc">+</span></span>
|
||
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a> <span class="fu">theme_void</span>()</span></code></pre></div>
|
||
<p><img src="" alt="A 5-by-5 grid of point symbols annotated by the numbers that can be used to represent the symbols. From left to right, the first 15 symbols are lines or open shapes, the next 5 symbols are solid shapes and the last 5 symbols are filled shaped." /></p></li>
|
||
<li><p>The <strong>name</strong> of the shape:</p>
|
||
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>shape_names <span class="ot"><-</span> <span class="fu">c</span>(</span>
|
||
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a> <span class="st">"circle"</span>, <span class="fu">paste</span>(<span class="st">"circle"</span>, <span class="fu">c</span>(<span class="st">"open"</span>, <span class="st">"filled"</span>, <span class="st">"cross"</span>, <span class="st">"plus"</span>, <span class="st">"small"</span>)), <span class="st">"bullet"</span>,</span>
|
||
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a> <span class="st">"square"</span>, <span class="fu">paste</span>(<span class="st">"square"</span>, <span class="fu">c</span>(<span class="st">"open"</span>, <span class="st">"filled"</span>, <span class="st">"cross"</span>, <span class="st">"plus"</span>, <span class="st">"triangle"</span>)),</span>
|
||
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a> <span class="st">"diamond"</span>, <span class="fu">paste</span>(<span class="st">"diamond"</span>, <span class="fu">c</span>(<span class="st">"open"</span>, <span class="st">"filled"</span>, <span class="st">"plus"</span>)),</span>
|
||
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a> <span class="st">"triangle"</span>, <span class="fu">paste</span>(<span class="st">"triangle"</span>, <span class="fu">c</span>(<span class="st">"open"</span>, <span class="st">"filled"</span>, <span class="st">"square"</span>)),</span>
|
||
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a> <span class="fu">paste</span>(<span class="st">"triangle down"</span>, <span class="fu">c</span>(<span class="st">"open"</span>, <span class="st">"filled"</span>)),</span>
|
||
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a> <span class="st">"plus"</span>, <span class="st">"cross"</span>, <span class="st">"asterisk"</span></span>
|
||
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a>)</span>
|
||
<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a></span>
|
||
<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a>shapes <span class="ot"><-</span> <span class="fu">data.frame</span>(</span>
|
||
<span id="cb7-11"><a href="#cb7-11" tabindex="-1"></a> <span class="at">shape_names =</span> shape_names,</span>
|
||
<span id="cb7-12"><a href="#cb7-12" tabindex="-1"></a> <span class="at">x =</span> <span class="fu">c</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">7</span>, <span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>, <span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, <span class="dv">5</span>, <span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, <span class="dv">6</span>, <span class="dv">2</span><span class="sc">:</span><span class="dv">3</span>, <span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>),</span>
|
||
<span id="cb7-13"><a href="#cb7-13" tabindex="-1"></a> <span class="at">y =</span> <span class="sc">-</span><span class="fu">rep</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>, <span class="fu">c</span>(<span class="dv">7</span>, <span class="dv">6</span>, <span class="dv">4</span>, <span class="dv">4</span>, <span class="dv">2</span>, <span class="dv">3</span>))</span>
|
||
<span id="cb7-14"><a href="#cb7-14" tabindex="-1"></a>)</span>
|
||
<span id="cb7-15"><a href="#cb7-15" tabindex="-1"></a></span>
|
||
<span id="cb7-16"><a href="#cb7-16" tabindex="-1"></a><span class="fu">ggplot</span>(shapes, <span class="fu">aes</span>(x, y)) <span class="sc">+</span></span>
|
||
<span id="cb7-17"><a href="#cb7-17" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="fu">aes</span>(<span class="at">shape =</span> shape_names), <span class="at">fill =</span> <span class="st">"red"</span>, <span class="at">size =</span> <span class="dv">5</span>) <span class="sc">+</span></span>
|
||
<span id="cb7-18"><a href="#cb7-18" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="fu">aes</span>(<span class="at">label =</span> shape_names), <span class="at">nudge_y =</span> <span class="sc">-</span><span class="fl">0.3</span>, <span class="at">size =</span> <span class="fl">3.5</span>) <span class="sc">+</span></span>
|
||
<span id="cb7-19"><a href="#cb7-19" tabindex="-1"></a> <span class="fu">scale_shape_identity</span>() <span class="sc">+</span></span>
|
||
<span id="cb7-20"><a href="#cb7-20" tabindex="-1"></a> <span class="fu">theme_void</span>()</span></code></pre></div>
|
||
<p><img src="" alt="An irregular 6-by-7 grid of point symbols annotated by the names that can be used to represent the symbols. Broadly, from top to bottom, the symbols are circles, squares, diamonds, triangles and others. Broadly from left to right, the symbols are solid shapes, open shapes, filled shapes and others." width="90%" /></p></li>
|
||
<li><p>A <strong>single character</strong>, to use that character as a
|
||
plotting symbol.</p></li>
|
||
<li><p>A <code>.</code> to draw the smallest rectangle that is visible,
|
||
usually 1 pixel.</p></li>
|
||
<li><p>An <code>NA</code>, to draw nothing.</p></li>
|
||
</ul>
|
||
</div>
|
||
<div id="colour-and-fill-1" class="section level3">
|
||
<h3>Colour and fill</h3>
|
||
<p>Note that shapes 21-24 have both stroke <code>colour</code> and a
|
||
<code>fill</code>. The size of the filled part is controlled by
|
||
<code>size</code>, the size of the stroke is controlled by
|
||
<code>stroke</code>. Each is measured in mm, and the total size of the
|
||
point is the sum of the two. Note that the size is constant along the
|
||
diagonal in the following figure.</p>
|
||
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>sizes <span class="ot"><-</span> <span class="fu">expand.grid</span>(<span class="at">size =</span> (<span class="dv">0</span><span class="sc">:</span><span class="dv">3</span>) <span class="sc">*</span> <span class="dv">2</span>, <span class="at">stroke =</span> (<span class="dv">0</span><span class="sc">:</span><span class="dv">3</span>) <span class="sc">*</span> <span class="dv">2</span>)</span>
|
||
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="fu">ggplot</span>(sizes, <span class="fu">aes</span>(size, stroke, <span class="at">size =</span> size, <span class="at">stroke =</span> stroke)) <span class="sc">+</span> </span>
|
||
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a> <span class="fu">geom_abline</span>(<span class="at">slope =</span> <span class="sc">-</span><span class="dv">1</span>, <span class="at">intercept =</span> <span class="dv">6</span>, <span class="at">colour =</span> <span class="st">"white"</span>, <span class="at">linewidth =</span> <span class="dv">6</span>) <span class="sc">+</span> </span>
|
||
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="at">shape =</span> <span class="dv">21</span>, <span class="at">fill =</span> <span class="st">"red"</span>) <span class="sc">+</span></span>
|
||
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a> <span class="fu">scale_size_identity</span>()</span></code></pre></div>
|
||
<p><img src="" alt="A plot showing a 4-by-4 grid of red points, the top 12 points with black outlines. The size of the points increases horizontally. The stroke of the outlines of the points increases vertically. A white diagonal line with a negative slope marks that the 'stroke' versus 'size' trade-off has similar total sizes." /></p>
|
||
</div>
|
||
</div>
|
||
<div id="text" class="section level2">
|
||
<h2>Text</h2>
|
||
<div id="font-family" class="section level3">
|
||
<h3>Font family</h3>
|
||
<p>There are only three fonts that are guaranteed to work everywhere:
|
||
“sans” (the default), “serif”, or “mono”:</p>
|
||
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">x =</span> <span class="dv">1</span>, <span class="at">y =</span> <span class="dv">3</span><span class="sc">:</span><span class="dv">1</span>, <span class="at">family =</span> <span class="fu">c</span>(<span class="st">"sans"</span>, <span class="st">"serif"</span>, <span class="st">"mono"</span>))</span>
|
||
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a><span class="fu">ggplot</span>(df, <span class="fu">aes</span>(x, y)) <span class="sc">+</span> </span>
|
||
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="fu">aes</span>(<span class="at">label =</span> family, <span class="at">family =</span> family))</span></code></pre></div>
|
||
<p><img src="" alt="A plot showing three text labels arranged vertically. The top label is 'sans' and is displayed in a sans-serif font. The middle label is 'serif' and is displayed in a serif font. The bottom label is 'mono' and is displayed in a monospaced font." /></p>
|
||
<p>It’s trickier to include a system font on a plot because text drawing
|
||
is done differently by each graphics device (GD). There are five GDs in
|
||
common use (<code>png()</code>, <code>pdf()</code>, on screen devices
|
||
for Windows, Mac and Linux), so to have a font work everywhere you need
|
||
to configure five devices in five different ways. Two packages simplify
|
||
the quandary a bit:</p>
|
||
<ul>
|
||
<li><p><code>showtext</code> makes GD-independent plots by rendering all
|
||
text as polygons.</p></li>
|
||
<li><p><code>extrafont</code> converts fonts to a standard format that
|
||
all devices can use.</p></li>
|
||
</ul>
|
||
<p>Both approaches have pros and cons, so you will to need to try both
|
||
of them and see which works best for your needs.</p>
|
||
</div>
|
||
<div id="font-face" class="section level3">
|
||
<h3>Font face</h3>
|
||
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>, <span class="at">fontface =</span> <span class="fu">c</span>(<span class="st">"plain"</span>, <span class="st">"bold"</span>, <span class="st">"italic"</span>, <span class="st">"bold.italic"</span>))</span>
|
||
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a><span class="fu">ggplot</span>(df, <span class="fu">aes</span>(<span class="dv">1</span>, x)) <span class="sc">+</span> </span>
|
||
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="fu">aes</span>(<span class="at">label =</span> fontface, <span class="at">fontface =</span> fontface))</span></code></pre></div>
|
||
<p><img src="" alt="A plot showing four text labels arranged vertically. The top label is 'bold.italic' and is displayed in bold and italic. The next three labels are 'italic', 'bold' and 'plain' and are displayed in their respective styles." /></p>
|
||
</div>
|
||
<div id="font-size" class="section level3">
|
||
<h3>Font size</h3>
|
||
<p>The <code>size</code> of text is measured in mm by default. This is
|
||
unusual, but makes the size of text consistent with the size of lines
|
||
and points. Typically you specify font size using points (or pt for
|
||
short), where 1 pt = 0.35mm. In <code>geom_text()</code> and
|
||
<code>geom_label()</code>, you can set <code>size.unit = "pt"</code> to
|
||
use points instead of millimeters. In addition, ggplot2 provides a
|
||
conversion factor as the variable <code>.pt</code>, so if you want to
|
||
draw 12pt text, you can also set <code>size = 12 / .pt</code>.</p>
|
||
</div>
|
||
<div id="justification" class="section level3">
|
||
<h3>Justification</h3>
|
||
<p>Horizontal and vertical justification have the same parameterisation,
|
||
either a string (“top”, “middle”, “bottom”, “left”, “center”, “right”)
|
||
or a number between 0 and 1:</p>
|
||
<ul>
|
||
<li>top = 1, middle = 0.5, bottom = 0</li>
|
||
<li>left = 0, center = 0.5, right = 1</li>
|
||
</ul>
|
||
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a>just <span class="ot"><-</span> <span class="fu">expand.grid</span>(<span class="at">hjust =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>, <span class="dv">1</span>), <span class="at">vjust =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.5</span>, <span class="dv">1</span>))</span>
|
||
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a>just<span class="sc">$</span>label <span class="ot"><-</span> <span class="fu">paste0</span>(just<span class="sc">$</span>hjust, <span class="st">", "</span>, just<span class="sc">$</span>vjust)</span>
|
||
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a></span>
|
||
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a><span class="fu">ggplot</span>(just, <span class="fu">aes</span>(hjust, vjust)) <span class="sc">+</span></span>
|
||
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a> <span class="fu">geom_point</span>(<span class="at">colour =</span> <span class="st">"grey70"</span>, <span class="at">size =</span> <span class="dv">5</span>) <span class="sc">+</span> </span>
|
||
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a> <span class="fu">geom_text</span>(<span class="fu">aes</span>(<span class="at">label =</span> label, <span class="at">hjust =</span> hjust, <span class="at">vjust =</span> vjust))</span></code></pre></div>
|
||
<p><img src="" alt="A 3-by-3 grid of text on top of points, with horizontal text justification increasing from 0 to 1 on the x-axis and vertical justification increasing from 0 to 1 on the y-axis. The points make it easier to see the relative placement of text." /></p>
|
||
<p>Note that you can use numbers outside the range (0, 1), but it’s not
|
||
recommended.</p>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
<!-- code folding -->
|
||
|
||
|
||
<!-- dynamically load mathjax for compatibility with self-contained -->
|
||
<script>
|
||
(function () {
|
||
var script = document.createElement("script");
|
||
script.type = "text/javascript";
|
||
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
|
||
document.getElementsByTagName("head")[0].appendChild(script);
|
||
})();
|
||
</script>
|
||
|
||
</body>
|
||
</html>
|