2025-01-12 04:36:52 +08:00

107 lines
3.6 KiB
Plaintext

R Under development (unstable) (2016-03-23 r70368) -- "Unsuffered Consequences"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: i686-pc-linux-gnu (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #
> # Formal test of the quantile routine for survfit
> library(survival)
> aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...)
>
> # There are 8 cases: strata Y/N, ncol(surv) >1, conf.int = T/F
> # Subcase: the quantile exactly agrees with a horizontal segment of
> # the curve or not.
> # First do the 4 cases where fit$surv is a vector
> #
> test1 <- data.frame(time= c(9, 3,1,1,6,6,8, 10),
+ status=c(1,NA,1,0,1,1,0, 0),
+ x= c(0, 2,1,1,1,0,0, 0))
>
> # True survival = (6/7) * (3/5) * (1/2) for overall
> # The q's are chosen to include a point < first jump, mid, after last jump,
> # and exact intersections with the "flats" of the curve.
> #
> qq <- c(13/14, 6/7, 2/3, .5, 9/35, .1)
>
> # Nothing on the right hand side, simple survival (no strata)
> fit1 <- survfit(Surv(time, status) ~ 1, test1, conf.type='none')
> aeq(quantile(fit1, 1-qq), c(1, 3.5, 6, 9, 9.5, NA)) #without conf.int
[1] TRUE
>
> fit2 <- survfit(Surv(time, status) ~ 1, test1) #with conf.int
> aeq(quantile(fit2, 1-qq),
+ list(quantile = c(1, 3.5, 6, 9, 9.5, NA),
+ lower = c(1,1,1,6,6,9),
+ upper = rep(as.numeric(NA), 6)), check.attributes=FALSE)
[1] TRUE
> aeq(quantile(fit2, 1-qq, FALSE), c(1, 3.5, 6, 9, 9.5, NA))
[1] TRUE
>
>
> # Now a variable on the right (strata in the result)
> # curve 0: (t=6, S=3/4), (t=9, S=3/8)
> # curve 1: (t=1, S=2/3), (t=6, S= 0)
> fit1 <- survfit(Surv(time, status) ~ x, test1, conf.type='none')
> aeq(quantile(fit1, 1-qq),
+ matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T))
[1] TRUE
>
> fit2 <- survfit(Surv(time, status) ~ x, test1)
> aeq(quantile(fit2, 1-qq, FALSE),
+ matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T))
[1] TRUE
>
> temp <- quantile(fit2, 1-qq)
> aeq(temp$quantile, matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T))
[1] TRUE
> aeq(temp$lower, matrix(c(6,6,6,6,9,9, 1,1,1,1, NA,NA), nrow=2, byrow=T))
[1] TRUE
> aeq(temp$upper, rep(as.numeric(NA), 12))
[1] TRUE
>
> # Second major case set -- a survfit object where fit$surv is a matrix
> # This arises from coxph models
> # There is only 1 subject with ph.ecog=3 which is a nice edge case
> cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), lung)
> sfit <- survfit(cfit, newdata=data.frame(age=c(50, 70)))
> qtot <- quantile(sfit, qq)
> for (i in 1:4) {
+ for (j in 1:2) {
+ temp <- quantile(sfit[i,j], qq)
+ print(c(aeq(qtot$quantile[i,j,], temp$quantile),
+ aeq(qtot$upper[i,j,], temp$upper),
+ aeq(qtot$lower[i,j,], temp$lower)))
+ }
+ }
[1] TRUE TRUE TRUE
[1] TRUE TRUE TRUE
[1] TRUE TRUE TRUE
[1] TRUE TRUE TRUE
[1] TRUE TRUE TRUE
[1] TRUE TRUE TRUE
[1] TRUE TRUE TRUE
[1] TRUE TRUE TRUE
> temp <- quantile(sfit, qq, conf.int=FALSE)
> all.equal(qtot$quantile, temp)
[1] TRUE
>
>
>
>
>
> proc.time()
user system elapsed
0.324 0.032 0.355