2025-01-12 04:36:52 +08:00

524 lines
86 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Claus O. Wilke" />
<meta name="date" content="2022-12-19" />
<title>Generating isolines and isobands</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Generating isolines and isobands</h1>
<h4 class="author">Claus O. Wilke</h4>
<h4 class="date">2022-12-19</h4>
<p>The isoband package implements fast algorithms for generating
isolines (lines of equal elevation) and isobands (ranges of elevation
delimited by two isolines) from a matrix of elevation data. For both
cases, the package employs the marching squares algorithms as described
on <a href="https://en.wikipedia.org/wiki/Marching_squares">Wikipedia.</a>
Marching squares algorithms break down the elevation matrix into blocks
of 2x2 elevation values. For each block, they then determine the
appropriate isolines/isobands from a lookup table of all possible
arrangements of isolines or isobands within a 2x2 block. There are 16
distinct possibilities for isolines and 81 for isobands. The
implementation in the isoband package goes beyond the algorithm
described on Wikipedia in that it merges the isolines or isobands from
separate blocks into extended line traces or polygons. The package is
meant as a low-level package with minimal required dependencies.
Therefore, many of the functions provided may not immediately be useful
to endusers, but they will enable developers of other packages to
integrate isolines and isobands into their feature set.</p>
<p>The two main functions of the package are called
<code>isolines()</code> and <code>isobands()</code>, and they have
similar user interfaces and return values. Both take a vector
<code>x</code> specifying the x values corresponding to the columns of
the elevation matrix, a vector <code>y</code> specifying the y values
corresponding to the rows of the elevation matrix, and an elevation
matrix <code>z</code>. The two functions differ in that
<code>isolines()</code> takes a single argument <code>levels</code>
specifying the elevation levels for which isolines should be calculated,
whereas <code>isobands()</code> takes two arguments,
<code>levels_low</code> and <code>levels_high</code>, specifying the
lower and upper bounds for each isoband. The return value in both cases
is a list of lists. The outer list contains one list element for each
specified isolevel. The inner lists hold line or polygon data in the
form <code>x</code>, <code>y</code>, <code>id</code> as used by
<code>grid::polylineGrob()</code> or <code>grid::pathGrob()</code>. The
format has been chosen for easy drawing of the resulting values via
these two grid functions.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(isoband)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(grid)</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>m <span class="ot">&lt;-</span> <span class="fu">matrix</span>(</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,</span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">0</span>,</span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">0</span>, <span class="dv">0</span>,</span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">0</span>,</span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>),</span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a> <span class="dv">5</span>, <span class="dv">5</span>, <span class="at">byrow =</span> <span class="cn">TRUE</span></span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>lines <span class="ot">&lt;-</span> <span class="fu">isolines</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">ncol</span>(m)<span class="sc">/</span><span class="dv">6</span>, <span class="at">y =</span> <span class="fu">nrow</span>(m)<span class="sc">:</span><span class="dv">1</span><span class="sc">/</span><span class="dv">6</span>, <span class="at">z =</span> m, <span class="at">levels =</span> <span class="fl">0.5</span>)</span>
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a>lines</span>
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5`</span></span>
<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5`$x</span></span>
<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 0.6666667 0.5833333 0.5000000 0.4166667 0.3333333 0.2500000 0.2500000</span></span>
<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [8] 0.2500000 0.3333333 0.5000000 0.6666667 0.7500000 0.6666667 0.6250000</span></span>
<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [15] 0.6666667 0.7500000 0.6666667</span></span>
<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5`$y</span></span>
<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 0.2500000 0.3333333 0.3750000 0.3333333 0.2500000 0.3333333 0.5000000</span></span>
<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [8] 0.6666667 0.7500000 0.7916667 0.7500000 0.6666667 0.5833333 0.5000000</span></span>
<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [15] 0.4166667 0.3333333 0.2500000</span></span>
<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5`$id</span></span>
<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</span></span>
<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; attr(,&quot;class&quot;)</span></span>
<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] &quot;isolines&quot; &quot;iso&quot;</span></span>
<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a><span class="fu">grid.newpage</span>()</span>
<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a><span class="fu">grid.draw</span>(<span class="fu">polylineGrob</span>(lines[[<span class="dv">1</span>]]<span class="sc">$</span>x, lines[[<span class="dv">1</span>]]<span class="sc">$</span>y, lines[[<span class="dv">1</span>]]<span class="sc">$</span>id))</span></code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>bands <span class="ot">&lt;-</span> <span class="fu">isobands</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">ncol</span>(m)<span class="sc">/</span><span class="dv">6</span>, <span class="at">y =</span> <span class="fu">nrow</span>(m)<span class="sc">:</span><span class="dv">1</span><span class="sc">/</span><span class="dv">6</span>, <span class="at">z =</span> m, <span class="at">levels_low =</span> <span class="fl">0.5</span>, <span class="at">levels_high =</span> <span class="fl">1.5</span>)</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>bands</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5:1.5`</span></span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5:1.5`$x</span></span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 0.4166667 0.3333333 0.2500000 0.2500000 0.2500000 0.3333333 0.5000000</span></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [8] 0.6666667 0.7500000 0.6666667 0.6250000 0.6666667 0.7500000 0.6666667</span></span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [15] 0.5833333 0.5000000 0.5000000 0.5416667 0.5833333 0.5000000 0.4166667</span></span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [22] 0.4166667</span></span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5:1.5`$y</span></span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 0.3333333 0.2500000 0.3333333 0.5000000 0.6666667 0.7500000 0.7916667</span></span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [8] 0.7500000 0.6666667 0.5833333 0.5000000 0.4166667 0.3333333 0.2500000</span></span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [15] 0.3333333 0.3750000 0.4583333 0.5000000 0.6666667 0.7083333 0.6666667</span></span>
<span id="cb2-15"><a href="#cb2-15" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [22] 0.5000000</span></span>
<span id="cb2-16"><a href="#cb2-16" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-17"><a href="#cb2-17" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`0.5:1.5`$id</span></span>
<span id="cb2-18"><a href="#cb2-18" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2</span></span>
<span id="cb2-19"><a href="#cb2-19" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-20"><a href="#cb2-20" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-21"><a href="#cb2-21" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; attr(,&quot;class&quot;)</span></span>
<span id="cb2-22"><a href="#cb2-22" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] &quot;isobands&quot; &quot;iso&quot;</span></span>
<span id="cb2-23"><a href="#cb2-23" aria-hidden="true" tabindex="-1"></a><span class="fu">grid.newpage</span>()</span>
<span id="cb2-24"><a href="#cb2-24" aria-hidden="true" tabindex="-1"></a><span class="fu">grid.draw</span>(<span class="fu">pathGrob</span>(bands[[<span class="dv">1</span>]]<span class="sc">$</span>x, bands[[<span class="dv">1</span>]]<span class="sc">$</span>y, bands[[<span class="dv">1</span>]]<span class="sc">$</span>id, <span class="at">gp =</span> <span class="fu">gpar</span>(<span class="at">fill =</span> <span class="st">&quot;cornsilk&quot;</span>)))</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>A convenience function <code>plot_iso()</code> can be used to inspect
a single isoband and corresponding isolines for an elevation matrix.
This function is mostly meant for debugging and illustration purposes.
It draws a grid of matrix points colored by whether each point is below,
within, or above the isoband, as well as the isoband itself and the
enclosing isolines.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_iso</span>(m, <span class="fl">0.5</span>, <span class="fl">1.5</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>The isoband package handles <code>NA</code> values in the matrix by
simply ignoring the respective grid points.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>m <span class="ot">&lt;-</span> <span class="fu">matrix</span>(</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="cn">NA</span>, <span class="cn">NA</span>, <span class="cn">NA</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,</span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a> <span class="cn">NA</span>, <span class="cn">NA</span>, <span class="cn">NA</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>,</span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>,</span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,</span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>,</span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>),</span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a> <span class="dv">6</span>, <span class="dv">6</span>, <span class="at">byrow =</span> <span class="cn">TRUE</span></span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb4-10"><a href="#cb4-10" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_iso</span>(m, <span class="fl">0.5</span>, <span class="fl">1.5</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>Isobands can contain holes, as shown above, and they can also consist
of multiple disconnected pieces.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>m <span class="ot">&lt;-</span> <span class="fu">matrix</span>(</span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>,</span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">1</span>,</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a> <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>, <span class="dv">0</span>,</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a> <span class="dv">0</span>, <span class="dv">0</span>, <span class="fl">0.8</span>, <span class="dv">0</span>),</span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a> <span class="dv">4</span>, <span class="dv">4</span>, <span class="at">byrow =</span> <span class="cn">TRUE</span></span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_iso</span>(m, <span class="fl">0.5</span>, <span class="fl">1.5</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<div id="performance" class="section level1">
<h1>Performance</h1>
<p>The code is written in C++ and performance is generally good.
Isolining is about as fast as <code>grDevices::contourLines()</code>,
isobanding is approximately 2.5 times slower.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># contouring with contourLines() from grDevices</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>fn_contourLines <span class="ot">&lt;-</span> <span class="cf">function</span>() {</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a> grDevices<span class="sc">::</span><span class="fu">contourLines</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">ncol</span>(volcano), <span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(volcano), volcano, <span class="at">levels =</span> <span class="dv">10</span><span class="sc">*</span>(<span class="dv">10</span><span class="sc">:</span><span class="dv">18</span>))</span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="co"># contouring with isolines()</span></span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a>fn_isolines <span class="ot">&lt;-</span> <span class="cf">function</span>() {</span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">isolines</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">ncol</span>(volcano), <span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(volcano), volcano, <span class="dv">10</span><span class="sc">*</span>(<span class="dv">10</span><span class="sc">:</span><span class="dv">18</span>))</span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="co"># contouring with isobands()</span></span>
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>fn_isobands <span class="ot">&lt;-</span> <span class="cf">function</span>() {</span>
<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a> <span class="fu">isobands</span>(<span class="dv">1</span><span class="sc">:</span><span class="fu">ncol</span>(volcano), <span class="dv">1</span><span class="sc">:</span><span class="fu">nrow</span>(volcano), volcano, <span class="dv">10</span><span class="sc">*</span>(<span class="dv">9</span><span class="sc">:</span><span class="dv">17</span>), <span class="dv">10</span><span class="sc">*</span>(<span class="dv">10</span><span class="sc">:</span><span class="dv">18</span>))</span>
<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>microbenchmark<span class="sc">::</span><span class="fu">microbenchmark</span>(<span class="fu">fn_contourLines</span>(), <span class="fu">fn_isolines</span>(), <span class="fu">fn_isobands</span>())</span>
<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; Warning in microbenchmark::microbenchmark(fn_contourLines(), fn_isolines(), :</span></span>
<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; less accurate nanosecond times to avoid potential integer overflows</span></span>
<span id="cb6-19"><a href="#cb6-19" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; Unit: microseconds</span></span>
<span id="cb6-20"><a href="#cb6-20" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; expr min lq mean median uq max</span></span>
<span id="cb6-21"><a href="#cb6-21" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; fn_contourLines() 822.419 897.982 1036.6727 963.3565 995.070 5253.822</span></span>
<span id="cb6-22"><a href="#cb6-22" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; fn_isolines() 566.948 587.653 616.8585 601.2445 614.549 1795.964</span></span>
<span id="cb6-23"><a href="#cb6-23" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; fn_isobands() 1327.867 1375.693 1778.1007 1399.7400 1421.593 36578.314</span></span>
<span id="cb6-24"><a href="#cb6-24" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; neval cld</span></span>
<span id="cb6-25"><a href="#cb6-25" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; 100 a </span></span>
<span id="cb6-26"><a href="#cb6-26" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; 100 a </span></span>
<span id="cb6-27"><a href="#cb6-27" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; 100 b</span></span></code></pre></div>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>