103 lines
3.2 KiB
Plaintext
103 lines
3.2 KiB
Plaintext
|
|
R Under development (unstable) (2022-07-22 r82614) -- "Unsuffered Consequences"
|
|
Copyright (C) 2022 The R Foundation for Statistical Computing
|
|
Platform: x86_64-pc-linux-gnu (64-bit)
|
|
|
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
|
You are welcome to redistribute it under certain conditions.
|
|
Type 'license()' or 'licence()' for distribution details.
|
|
|
|
R is a collaborative project with many contributors.
|
|
Type 'contributors()' for more information and
|
|
'citation()' on how to cite R or R packages in publications.
|
|
|
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
|
'help.start()' for an HTML browser interface to help.
|
|
Type 'q()' to quit R.
|
|
|
|
> #
|
|
> # This code verified some oddities about model frames
|
|
> #
|
|
> options(contrasts=c("contr.treatment", "contr.poly")) # clean slate
|
|
>
|
|
> tdata <- data.frame(y=1:10, x1=letters[c(1,2,3,1,2,3,1,2,3,1)],
|
|
+ x2=LETTERS[c(1,2,3,4,1,2,3,4,1,2)],
|
|
+ stringsAsFactors=TRUE)
|
|
> tdata$x3 <- as.character(tdata$x1)
|
|
>
|
|
> fit1 <- lm(y ~ x1 + x2, tdata, x=TRUE)
|
|
> m1 <- fit1$model
|
|
> t1 <- terms(fit1)
|
|
>
|
|
> # Lesson 1: xlev is ignored when the variable already has levels
|
|
> # as an attribute
|
|
>
|
|
> temp <- list(x1=c("a", "c", "b"), x2=LETTERS[4:1])
|
|
> x2 <- model.matrix(t1, m1, xlev=temp)
|
|
> x3 <- model.matrix(t1, tdata, xlev=temp)
|
|
>
|
|
> all.equal(x2, fit1$x)
|
|
[1] TRUE
|
|
> !is.logical(all.equal(x2, x3)) # x2 and x3 do not agree
|
|
[1] TRUE
|
|
> attributes(m1$x1)
|
|
$levels
|
|
[1] "a" "b" "c"
|
|
|
|
$class
|
|
[1] "factor"
|
|
|
|
>
|
|
>
|
|
> # Lesson 2: character variables do not have their levels
|
|
> # remembered as attributes in the model frame, but these are
|
|
> # found in fit$xlevels and fit$contrasts.
|
|
> # However, the xlev argument is still ignored for a model frame!
|
|
> fit2 <- lm(y ~ x3 + x2, tdata, x=TRUE)
|
|
> m2 <- fit2$model
|
|
> x3 <- model.matrix(terms(fit2), m2, xlev=fit2$xlevels)
|
|
> x4 <- model.matrix(terms(fit2), m2, xlev=list(x3=letters[3:1]))
|
|
> x5 <- model.matrix(terms(fit2), tdata, xlev=list(x3=letters[3:1]))
|
|
> all.equal(fit2$x, x3)
|
|
[1] TRUE
|
|
> all.equal(x3, x4)
|
|
[1] TRUE
|
|
> all.equal(x3, x5) # FALSE
|
|
[1] "Attributes: < Component \"dimnames\": Component 2: 1 string mismatch >"
|
|
[2] "Mean relative difference: 2.333333"
|
|
>
|
|
>
|
|
> # Lesson 3: contrasts.arg is relevant, even when the model frame
|
|
> # has a saved contrast
|
|
> ctemp <- list(x1="contr.SAS", x2= contr.helmert(LETTERS[1:4]))
|
|
> x4 <- model.matrix(t1, m1, contrasts.arg=ctemp) # no saved contrast
|
|
>
|
|
> fit3 <- lm(y ~ x1 + C(x2, contr.SAS), tdata)
|
|
> m3 <- fit3$model
|
|
> attr(m3[[3]], 'contr') # the contrast is saved
|
|
A B C
|
|
A 1 0 0
|
|
B 0 1 0
|
|
C 0 0 1
|
|
D 0 0 0
|
|
> c2 <- ctemp
|
|
> names(c2) <- names(fit3$contrasts)
|
|
> x5 <- model.matrix(terms(fit3), m3, contrasts.arg=c2)
|
|
> all.equal(x4, x5, check.attributes=FALSE)
|
|
[1] TRUE
|
|
>
|
|
> # Lesson 4: and this holds for a character variable as well
|
|
> fit4 <- lm(y ~ x3 + C(x2, contr.SAS), tdata, x=TRUE)
|
|
> c4 <- ctemp
|
|
> names(c4) <- names(fit4$contrasts)
|
|
> x6 <- model.matrix(terms(fit4), fit4$model, xlev=fit4$xlevels, contrasts.arg=c4)
|
|
> x7 <- model.matrix(terms(fit4), fit4$model, contrasts.arg=c4)
|
|
> all.equal(x7, x6)
|
|
[1] TRUE
|
|
> all.equal(x7, x5, check.attributes=FALSE)
|
|
[1] TRUE
|
|
>
|
|
> proc.time()
|
|
user system elapsed
|
|
0.128 0.017 0.138
|