2025-01-12 00:52:51 +08:00

90 lines
2.5 KiB
R

options(na.action=na.exclude) #preserve length of missings
library(survival)
#
# Run a test that can be verified using other packages
#
test1 <- data.frame(time= c(9, 3,1,1,6,6,8),
status=c(1,NA,1,0,1,1,0),
x= c(0, 2,1,1,1,0,0))
fit1w <- survreg(Surv(time, status) ~x, test1, dist='weibull')
fit1w
summary(fit1w)
fit1e <- survreg(Surv(time, status) ~x, test1, dist='exponential')
fit1e
summary(fit1e)
fit1l <- survreg(Surv(time, status) ~x, test1, dist='loglogistic')
fit1l
summary(fit1l)
fit1g <- survreg(Surv(time, status) ~x, test1, dist='lognormal')
summary(fit1g)
#
# Do a test with the ovarian data
#
fitfw <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian,
dist='weibull')
fitfw
fitfl <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian,
dist='loglogistic')
fitfl
#test out interval censoring, using some dummy time values
idat <- read.table('data.interval', skip=3, header=T, sep=',')
flsurv<- Surv(idat$ltime, idat$rtime, type='interval2')
fitfw2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='weibull')
summary(fitfw2)
fitfl2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='loglogistic')
summary(fitfl2)
fitfg2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='lognormal')
summary(fitfg2)
logt <- c(survreg.distributions$t,
survreg.distributions$weibull[c('trans', 'itrans', 'dtrans')])
logt$name <- 'log(t)'
fitft2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps,
idat, dist=logt, parm=100)
summary(fitft2) #should be quite close to fitfg2
#
# Check out the survreg density and probability functions
#
# Gaussian
x <- -10:10
p <- seq(.1, .95, length=25)
all.equal(dsurvreg(x, 1, 5, 'gaussian'), dnorm(x, 1, 5))
all.equal(psurvreg(x, 1, 5, 'gaussian'), pnorm(x, 1, 5))
all.equal(qsurvreg(p, 1, 5, 'gaussian'), qnorm(p, 1, 5))
# Lognormal
x <- 1:10
all.equal(dsurvreg(x, 1, 5, 'lognormal'), dlnorm(x, 1, 5))
all.equal(psurvreg(x, 1, 5, 'lognormal'), plnorm(x, 1, 5))
all.equal(qsurvreg(p, 1, 5, 'lognormal'), qlnorm(p, 1, 5))
# Weibull
lambda <- exp(-2)
rho <- 1/3
temp <- (lambda*x)^rho
all.equal(psurvreg(x, 2, 3), 1- exp(-temp))
all.equal(dsurvreg(x, 2, 3), lambda*rho*(lambda*x)^(rho-1)*exp(-temp))
# verify labeling in the vcov function, with 0, 1, or 2 scale factors
fit0 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist='exponential')
vcov(fit0)
fit1 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist='weibull')
vcov(fit1)
fit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung)
vcov(fit2)