117 lines
3.6 KiB
Plaintext
117 lines
3.6 KiB
Plaintext
|
|
R Under development (unstable) (2024-04-29 r86493) -- "Unsuffered Consequences"
|
|
Copyright (C) 2024 The R Foundation for Statistical Computing
|
|
Platform: aarch64-unknown-linux-gnu
|
|
|
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
|
You are welcome to redistribute it under certain conditions.
|
|
Type 'license()' or 'licence()' for distribution details.
|
|
|
|
R is a collaborative project with many contributors.
|
|
Type 'contributors()' for more information and
|
|
'citation()' on how to cite R or R packages in publications.
|
|
|
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
|
'help.start()' for an HTML browser interface to help.
|
|
Type 'q()' to quit R.
|
|
|
|
> #
|
|
> # Make sure that the newdata argument works for various
|
|
> # predictions
|
|
> # We purposely use a subset of the lung data that has only some
|
|
> # of the levels of ph.ecog
|
|
> library(survival)
|
|
> options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly'))
|
|
> aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
|
|
>
|
|
> myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), lung)
|
|
>
|
|
> keep <- which(lung$inst<13 & (lung$ph.ecog==1 | lung$ph.ecog==2))
|
|
> p1 <- predict(myfit, type='lp')
|
|
> p2 <- predict(myfit, type="lp", newdata=lung[keep,])
|
|
> p3 <- predict(myfit, type='lp', se.fit=TRUE)
|
|
> p4 <- predict(myfit, type="lp", newdata=lung[keep,], se.fit=TRUE)
|
|
> aeq(p1[keep], p2)
|
|
[1] TRUE
|
|
> aeq(p1, p3$fit)
|
|
[1] TRUE
|
|
> aeq(p1[keep], p4$fit)
|
|
[1] TRUE
|
|
> aeq(p3$se.fit[keep], p4$se.fit)
|
|
[1] TRUE
|
|
>
|
|
> p1 <- predict(myfit, type='risk')
|
|
> p2 <- predict(myfit, type="risk", newdata=lung[keep,])
|
|
> p3 <- predict(myfit, type='risk', se.fit=TRUE)
|
|
> p4 <- predict(myfit, type="risk", newdata=lung[keep,], se.fit=TRUE)
|
|
> aeq(p1[keep], p2)
|
|
[1] TRUE
|
|
> aeq(p1, p3$fit)
|
|
[1] TRUE
|
|
> aeq(p1[keep], p4$fit)
|
|
[1] TRUE
|
|
> aeq(p3$se.fit[keep], p4$se.fit)
|
|
[1] TRUE
|
|
>
|
|
> # The all.equal fails for type=expected, Efron approx, and tied death
|
|
> # times due to use of an approximation. See comments in the source code.
|
|
> myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex),
|
|
+ data=lung, method='breslow')
|
|
> p1 <- predict(myfit, type='expected')
|
|
> p2 <- predict(myfit, type="expected", newdata=lung[keep,])
|
|
> p3 <- predict(myfit, type='expected', se.fit=TRUE)
|
|
> p4 <- predict(myfit, type="expected", newdata=lung[keep,], se.fit=TRUE)
|
|
> aeq(p1[keep], p2)
|
|
[1] TRUE
|
|
> aeq(p1, p3$fit)
|
|
[1] TRUE
|
|
> aeq(p1[keep], p4$fit)
|
|
[1] TRUE
|
|
> aeq(p3$se.fit[keep], p4$se.fit)
|
|
[1] TRUE
|
|
>
|
|
> p1 <- predict(myfit, type='terms')
|
|
> p2 <- predict(myfit, type="terms",newdata=lung[keep,])
|
|
> p3 <- predict(myfit, type='terms', se.fit=T)
|
|
> p4 <- predict(myfit, type="terms",newdata=lung[keep,], se.fit=T)
|
|
> aeq(p1[keep,], p2)
|
|
[1] TRUE
|
|
> aeq(p1, p3$fit)
|
|
[1] TRUE
|
|
> aeq(p1[keep,], p4$fit)
|
|
[1] TRUE
|
|
> aeq(p3$se.fit[keep,], p4$se.fit)
|
|
[1] TRUE
|
|
>
|
|
> #
|
|
> # Check out the logic whereby predict does not need to
|
|
> # recover the model frame. The first call should not
|
|
> # need to do so, the second should in each case.
|
|
> #
|
|
> myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung, x=T)
|
|
> p1 <- predict(myfit, type='risk', se=T)
|
|
> myfit2 <- coxph(Surv(time, status) ~ age + factor(sex), lung)
|
|
> p2 <- predict(myfit2, type='risk', se=T)
|
|
> aeq(p1$fit, p2$fit)
|
|
[1] TRUE
|
|
> aeq(p1$se, p2$se)
|
|
[1] TRUE
|
|
>
|
|
> p1 <- predict(myfit, type='expected', se=T)
|
|
> p2 <- predict(myfit2, type='expected', se=T)
|
|
> aeq(p1$fit, p2$fit)
|
|
[1] TRUE
|
|
> aeq(p1$se.fit, p2$se.fit)
|
|
[1] TRUE
|
|
>
|
|
> p1 <- predict(myfit, type='terms', se=T)
|
|
> p2 <- predict(myfit2, type='terms', se=T)
|
|
> aeq(p1$fit, p2$fit)
|
|
[1] TRUE
|
|
> aeq(p1$se.fit, p2$se.fit)
|
|
[1] TRUE
|
|
>
|
|
> proc.time()
|
|
user system elapsed
|
|
0.430 0.027 0.455
|