451 lines
63 KiB
HTML
451 lines
63 KiB
HTML
<!DOCTYPE html>
|
|
|
|
<html>
|
|
|
|
<head>
|
|
|
|
<meta charset="utf-8" />
|
|
<meta name="generator" content="pandoc" />
|
|
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
|
|
<meta name="author" content="Steffen Möller" />
|
|
|
|
<meta name="date" content="2024-10-05" />
|
|
|
|
<title>Venn Diagrams with gplots</title>
|
|
|
|
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
|
|
// be compatible with the behavior of Pandoc < 2.8).
|
|
document.addEventListener('DOMContentLoaded', function(e) {
|
|
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
|
|
var i, h, a;
|
|
for (i = 0; i < hs.length; i++) {
|
|
h = hs[i];
|
|
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
|
|
a = h.attributes;
|
|
while (a.length > 0) h.removeAttribute(a[0].name);
|
|
}
|
|
});
|
|
</script>
|
|
|
|
<style type="text/css">
|
|
code{white-space: pre-wrap;}
|
|
span.smallcaps{font-variant: small-caps;}
|
|
span.underline{text-decoration: underline;}
|
|
div.column{display: inline-block; vertical-align: top; width: 50%;}
|
|
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
|
ul.task-list{list-style: none;}
|
|
</style>
|
|
|
|
|
|
|
|
<style type="text/css">
|
|
code {
|
|
white-space: pre;
|
|
}
|
|
.sourceCode {
|
|
overflow: visible;
|
|
}
|
|
</style>
|
|
<style type="text/css" data-origin="pandoc">
|
|
pre > code.sourceCode { white-space: pre; position: relative; }
|
|
pre > code.sourceCode > span { line-height: 1.25; }
|
|
pre > code.sourceCode > span:empty { height: 1.2em; }
|
|
.sourceCode { overflow: visible; }
|
|
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
|
div.sourceCode { margin: 1em 0; }
|
|
pre.sourceCode { margin: 0; }
|
|
@media screen {
|
|
div.sourceCode { overflow: auto; }
|
|
}
|
|
@media print {
|
|
pre > code.sourceCode { white-space: pre-wrap; }
|
|
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
|
}
|
|
pre.numberSource code
|
|
{ counter-reset: source-line 0; }
|
|
pre.numberSource code > span
|
|
{ position: relative; left: -4em; counter-increment: source-line; }
|
|
pre.numberSource code > span > a:first-child::before
|
|
{ content: counter(source-line);
|
|
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
|
border: none; display: inline-block;
|
|
-webkit-touch-callout: none; -webkit-user-select: none;
|
|
-khtml-user-select: none; -moz-user-select: none;
|
|
-ms-user-select: none; user-select: none;
|
|
padding: 0 4px; width: 4em;
|
|
color: #aaaaaa;
|
|
}
|
|
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
|
|
div.sourceCode
|
|
{ }
|
|
@media screen {
|
|
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
|
}
|
|
code span.al { color: #ff0000; font-weight: bold; }
|
|
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
code span.at { color: #7d9029; }
|
|
code span.bn { color: #40a070; }
|
|
code span.bu { color: #008000; }
|
|
code span.cf { color: #007020; font-weight: bold; }
|
|
code span.ch { color: #4070a0; }
|
|
code span.cn { color: #880000; }
|
|
code span.co { color: #60a0b0; font-style: italic; }
|
|
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
code span.do { color: #ba2121; font-style: italic; }
|
|
code span.dt { color: #902000; }
|
|
code span.dv { color: #40a070; }
|
|
code span.er { color: #ff0000; font-weight: bold; }
|
|
code span.ex { }
|
|
code span.fl { color: #40a070; }
|
|
code span.fu { color: #06287e; }
|
|
code span.im { color: #008000; font-weight: bold; }
|
|
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
code span.kw { color: #007020; font-weight: bold; }
|
|
code span.op { color: #666666; }
|
|
code span.ot { color: #007020; }
|
|
code span.pp { color: #bc7a00; }
|
|
code span.sc { color: #4070a0; }
|
|
code span.ss { color: #bb6688; }
|
|
code span.st { color: #4070a0; }
|
|
code span.va { color: #19177c; }
|
|
code span.vs { color: #4070a0; }
|
|
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
|
|
</style>
|
|
<script>
|
|
// apply pandoc div.sourceCode style to pre.sourceCode instead
|
|
(function() {
|
|
var sheets = document.styleSheets;
|
|
for (var i = 0; i < sheets.length; i++) {
|
|
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
|
|
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
|
|
var j = 0;
|
|
while (j < rules.length) {
|
|
var rule = rules[j];
|
|
// check if there is a div.sourceCode rule
|
|
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
|
|
j++;
|
|
continue;
|
|
}
|
|
var style = rule.style.cssText;
|
|
// check if color or background-color is set
|
|
if (rule.style.color === '' && rule.style.backgroundColor === '') {
|
|
j++;
|
|
continue;
|
|
}
|
|
// replace div.sourceCode by a pre.sourceCode rule
|
|
sheets[i].deleteRule(j);
|
|
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
|
|
}
|
|
}
|
|
})();
|
|
</script>
|
|
|
|
|
|
|
|
|
|
<style type="text/css">body {
|
|
background-color: #fff;
|
|
margin: 1em auto;
|
|
max-width: 700px;
|
|
overflow: visible;
|
|
padding-left: 2em;
|
|
padding-right: 2em;
|
|
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
|
|
font-size: 14px;
|
|
line-height: 1.35;
|
|
}
|
|
#TOC {
|
|
clear: both;
|
|
margin: 0 0 10px 10px;
|
|
padding: 4px;
|
|
width: 400px;
|
|
border: 1px solid #CCCCCC;
|
|
border-radius: 5px;
|
|
background-color: #f6f6f6;
|
|
font-size: 13px;
|
|
line-height: 1.3;
|
|
}
|
|
#TOC .toctitle {
|
|
font-weight: bold;
|
|
font-size: 15px;
|
|
margin-left: 5px;
|
|
}
|
|
#TOC ul {
|
|
padding-left: 40px;
|
|
margin-left: -1.5em;
|
|
margin-top: 5px;
|
|
margin-bottom: 5px;
|
|
}
|
|
#TOC ul ul {
|
|
margin-left: -2em;
|
|
}
|
|
#TOC li {
|
|
line-height: 16px;
|
|
}
|
|
table {
|
|
margin: 1em auto;
|
|
border-width: 1px;
|
|
border-color: #DDDDDD;
|
|
border-style: outset;
|
|
border-collapse: collapse;
|
|
}
|
|
table th {
|
|
border-width: 2px;
|
|
padding: 5px;
|
|
border-style: inset;
|
|
}
|
|
table td {
|
|
border-width: 1px;
|
|
border-style: inset;
|
|
line-height: 18px;
|
|
padding: 5px 5px;
|
|
}
|
|
table, table th, table td {
|
|
border-left-style: none;
|
|
border-right-style: none;
|
|
}
|
|
table thead, table tr.even {
|
|
background-color: #f7f7f7;
|
|
}
|
|
p {
|
|
margin: 0.5em 0;
|
|
}
|
|
blockquote {
|
|
background-color: #f6f6f6;
|
|
padding: 0.25em 0.75em;
|
|
}
|
|
hr {
|
|
border-style: solid;
|
|
border: none;
|
|
border-top: 1px solid #777;
|
|
margin: 28px 0;
|
|
}
|
|
dl {
|
|
margin-left: 0;
|
|
}
|
|
dl dd {
|
|
margin-bottom: 13px;
|
|
margin-left: 13px;
|
|
}
|
|
dl dt {
|
|
font-weight: bold;
|
|
}
|
|
ul {
|
|
margin-top: 0;
|
|
}
|
|
ul li {
|
|
list-style: circle outside;
|
|
}
|
|
ul ul {
|
|
margin-bottom: 0;
|
|
}
|
|
pre, code {
|
|
background-color: #f7f7f7;
|
|
border-radius: 3px;
|
|
color: #333;
|
|
white-space: pre-wrap;
|
|
}
|
|
pre {
|
|
border-radius: 3px;
|
|
margin: 5px 0px 10px 0px;
|
|
padding: 10px;
|
|
}
|
|
pre:not([class]) {
|
|
background-color: #f7f7f7;
|
|
}
|
|
code {
|
|
font-family: Consolas, Monaco, 'Courier New', monospace;
|
|
font-size: 85%;
|
|
}
|
|
p > code, li > code {
|
|
padding: 2px 0px;
|
|
}
|
|
div.figure {
|
|
text-align: center;
|
|
}
|
|
img {
|
|
background-color: #FFFFFF;
|
|
padding: 2px;
|
|
border: 1px solid #DDDDDD;
|
|
border-radius: 3px;
|
|
border: 1px solid #CCCCCC;
|
|
margin: 0 5px;
|
|
}
|
|
h1 {
|
|
margin-top: 0;
|
|
font-size: 35px;
|
|
line-height: 40px;
|
|
}
|
|
h2 {
|
|
border-bottom: 4px solid #f7f7f7;
|
|
padding-top: 10px;
|
|
padding-bottom: 2px;
|
|
font-size: 145%;
|
|
}
|
|
h3 {
|
|
border-bottom: 2px solid #f7f7f7;
|
|
padding-top: 10px;
|
|
font-size: 120%;
|
|
}
|
|
h4 {
|
|
border-bottom: 1px solid #f7f7f7;
|
|
margin-left: 8px;
|
|
font-size: 105%;
|
|
}
|
|
h5, h6 {
|
|
border-bottom: 1px solid #ccc;
|
|
font-size: 105%;
|
|
}
|
|
a {
|
|
color: #0033dd;
|
|
text-decoration: none;
|
|
}
|
|
a:hover {
|
|
color: #6666ff; }
|
|
a:visited {
|
|
color: #800080; }
|
|
a:visited:hover {
|
|
color: #BB00BB; }
|
|
a[href^="http:"] {
|
|
text-decoration: underline; }
|
|
a[href^="https:"] {
|
|
text-decoration: underline; }
|
|
|
|
code > span.kw { color: #555; font-weight: bold; }
|
|
code > span.dt { color: #902000; }
|
|
code > span.dv { color: #40a070; }
|
|
code > span.bn { color: #d14; }
|
|
code > span.fl { color: #d14; }
|
|
code > span.ch { color: #d14; }
|
|
code > span.st { color: #d14; }
|
|
code > span.co { color: #888888; font-style: italic; }
|
|
code > span.ot { color: #007020; }
|
|
code > span.al { color: #ff0000; font-weight: bold; }
|
|
code > span.fu { color: #900; font-weight: bold; }
|
|
code > span.er { color: #a61717; background-color: #e3d2d2; }
|
|
</style>
|
|
|
|
|
|
|
|
|
|
</head>
|
|
|
|
<body>
|
|
|
|
|
|
|
|
|
|
<h1 class="title toc-ignore">Venn Diagrams with <code>gplots</code></h1>
|
|
<h4 class="author">Steffen Möller</h4>
|
|
<h4 class="date">2024-10-05</h4>
|
|
|
|
|
|
|
|
<!--
|
|
%\VignetteEngine{knitr::rmarkdown}
|
|
%\VignetteIndexEntry{Venn Diagrams with `gplots`}
|
|
%\VignetteEncoding{UTF-8}
|
|
-->
|
|
<p>Venn diagrams <a href="https://en.wikipedia.org/wiki/Venn_diagram">Wikipedia</a> allow
|
|
for a quick overview on the number of elements that multiple sets share.
|
|
When those elements represent traits of real objects, like observations
|
|
in biomedical sciences, marketing, etc., this may direct researchers to
|
|
further investigations or decisions.</p>
|
|
<p>The <code>gplots</code> package provides Venn diagrams for up to five
|
|
sets. The R code to produce the diagrams is straightforward. The plot
|
|
function behaves the same, depending only on the number of overlapping
|
|
circles to draw. Its input is a table that is produced by another
|
|
function. The <code>venn()</code> function calls one after the other and
|
|
is the only one to be seen by the user. The values shown are returned
|
|
invisibly.</p>
|
|
<p>The <code>venn()</code> function accepts either a list of sets as an
|
|
argument, or it takes a binary matrix—one column per set—indicating for
|
|
every element, one per row, the membership with every set.</p>
|
|
<p>The common form with overlapping circles works with up to three sets,
|
|
as seen here:</p>
|
|
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">suppressMessages</span>(<span class="fu">library</span>(gplots))</span>
|
|
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">venn</span>( <span class="fu">list</span>(<span class="at">A=</span><span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>,<span class="at">B=</span><span class="dv">4</span><span class="sc">:</span><span class="dv">6</span>,<span class="at">C=</span><span class="fu">c</span>(<span class="dv">4</span>,<span class="dv">8</span><span class="sc">:</span><span class="dv">10</span>)) )</span></code></pre></div>
|
|
<p><img src="" /><!-- --></p>
|
|
<p>The names of columns or the list elements are the set names. To
|
|
squeeze extra circles in, those circles need to become ellipses. This
|
|
works for four sets:</p>
|
|
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>v.table <span class="ot"><-</span> <span class="fu">venn</span>( <span class="fu">list</span>(<span class="at">A=</span><span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>,<span class="at">B=</span><span class="dv">4</span><span class="sc">:</span><span class="dv">6</span>,<span class="at">C=</span><span class="fu">c</span>(<span class="dv">4</span>,<span class="dv">8</span><span class="sc">:</span><span class="dv">10</span>),<span class="at">D=</span><span class="fu">c</span>(<span class="dv">4</span><span class="sc">:</span><span class="dv">12</span>)) )</span></code></pre></div>
|
|
<p><img src="" /><!-- --></p>
|
|
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">print</span>(v.table)</span></code></pre></div>
|
|
<pre><code>## num A B C D
|
|
## 0000 0 0 0 0 0
|
|
## 0001 3 0 0 0 1
|
|
## 0010 0 0 0 1 0
|
|
## 0011 3 0 0 1 1
|
|
## 0100 0 0 1 0 0
|
|
## 0101 1 0 1 0 1
|
|
## 0110 0 0 1 1 0
|
|
## 0111 0 0 1 1 1
|
|
## 1000 3 1 0 0 0
|
|
## 1001 0 1 0 0 1
|
|
## 1010 0 1 0 1 0
|
|
## 1011 0 1 0 1 1
|
|
## 1100 0 1 1 0 0
|
|
## 1101 1 1 1 0 1
|
|
## 1110 0 1 1 1 0
|
|
## 1111 1 1 1 1 1
|
|
## attr(,"intersections")
|
|
## attr(,"intersections")$A
|
|
## [1] "1" "2" "3"
|
|
##
|
|
## attr(,"intersections")$D
|
|
## [1] "7" "11" "12"
|
|
##
|
|
## attr(,"intersections")$`B:D`
|
|
## [1] "6"
|
|
##
|
|
## attr(,"intersections")$`C:D`
|
|
## [1] "8" "9" "10"
|
|
##
|
|
## attr(,"intersections")$`A:B:D`
|
|
## [1] "5"
|
|
##
|
|
## attr(,"intersections")$`A:B:C:D`
|
|
## [1] "4"
|
|
##
|
|
## attr(,"class")
|
|
## [1] "venn"</code></pre>
|
|
<p>And maybe even more impressively for five:</p>
|
|
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">venn</span>( <span class="fu">list</span>(<span class="at">A=</span><span class="dv">1</span><span class="sc">:</span><span class="dv">5</span>,<span class="at">B=</span><span class="dv">4</span><span class="sc">:</span><span class="dv">6</span>,<span class="at">C=</span><span class="fu">c</span>(<span class="dv">4</span>,<span class="dv">8</span><span class="sc">:</span><span class="dv">10</span>),<span class="at">D=</span><span class="fu">c</span>(<span class="dv">4</span><span class="sc">:</span><span class="dv">12</span>),<span class="at">E=</span><span class="fu">c</span>(<span class="dv">2</span>,<span class="dv">4</span>,<span class="dv">6</span><span class="sc">:</span><span class="dv">9</span>)) )</span></code></pre></div>
|
|
<p><img src="" /><!-- --></p>
|
|
<p>The man page of venn() lists options to change the appearance of the
|
|
plots, e.g., the names of the sets may be omitted, and sizes changed.
|
|
However, there is ample opportunity to extend the functionality of this
|
|
package, such as:</p>
|
|
<ul>
|
|
<li>More dimensions</li>
|
|
<li>Colors</li>
|
|
<li>Variation of size of circles with the number of members in the
|
|
set</li>
|
|
<li>Density plot rather than numbers, identification of individual
|
|
entries</li>
|
|
</ul>
|
|
<p>The prime personal interest is in the increase of dimensions. Please
|
|
send patches for features you are most interested in.</p>
|
|
|
|
|
|
|
|
<!-- code folding -->
|
|
|
|
|
|
<!-- dynamically load mathjax for compatibility with self-contained -->
|
|
<script>
|
|
(function () {
|
|
var script = document.createElement("script");
|
|
script.type = "text/javascript";
|
|
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
|
|
document.getElementsByTagName("head")[0].appendChild(script);
|
|
})();
|
|
</script>
|
|
|
|
</body>
|
|
</html>
|