2025-01-12 04:36:52 +08:00

129 lines
4.4 KiB
Plaintext

R Under development (unstable) (2023-01-30 r83727) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(survival)
> library(splines)
> aeq <- function(x, y) all.equal(as.vector(x), as.vector(y))
>
> # A contrived example for the tt function
> #
> mkdata <- function(n, beta) {
+ age <- runif(n, 20, 60)
+ x <- rbinom(n, 1, .5)
+
+ futime <- rep(40, n) # everyone has 40 years of follow-up
+ status <- rep(0, n)
+ dtime <- runif(n/2, 1, 40) # 1/2 of them die
+ dtime <- sort(dtime)
+
+ # The risk is set to beta[1]*x + beta[2]* f(current_age)
+ # where f= 0 up to age 40, rises linear to age 70, flat after that
+ for (i in 1:length(dtime)) {
+ atrisk <- (futime >= dtime[i])
+ c.age <- age + dtime
+ age2 <- pmin(30, pmax(0, c.age-40))
+ xbeta <- beta[1]*x + beta[2]*age2
+
+ # Select a death according to risk
+ risk <- ifelse(atrisk, exp(xbeta), 0)
+ dead <- sample(1:n, 1, prob=risk/sum(risk))
+
+ futime[dead] <- dtime[i]
+ status[dead] <- 1
+ }
+ data.frame(futime=round(futime,1), status=status, age=age, x=x, risk=risk,
+ casewt = sample(1:5, n, replace=TRUE),
+
+ grp = sample(1:15, n, replace=TRUE))
+ }
>
> set.seed(1953) # a good year
> # The functional form won't be well estimated with n=100, but a large
> # n makes the test slow, and as a validity test n=100 and n=1000 are equally
> # good.
> tdata <- mkdata(100, c(log(1.5), 2/30)) # data set has many ties
>
> dtime <- sort(unique(tdata$futime[tdata$status==1]))
> data2 <- survSplit(Surv(futime, status) ~., tdata, cut=dtime)
> data2$c.age <- data2$age + data2$futime # current age
>
> # fit1 uses data at the event times, fit2$c.age might have a
> # wider range due to censorings. To make the two fits agree
> # fix the knots. I know a priori that 20 to 101 will cover it.
> ns2 <- function(x) ns(x, Boundary.knots=c(20, 101), knots=c(45, 60, 75))
>
> fit1 <- coxph(Surv(futime, status)~ x + tt(age), tdata,
+ tt= function(x, t, ...) ns2(x+t))
>
> fit2 <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2)
>
> aeq(coef(fit1), coef(fit2))
[1] TRUE
> aeq(vcov(fit1), vcov(fit2))
[1] TRUE
>
> #
> # Check that cluster, weight, and offset were correctly expanded
> #
> fit3a <- coxph(Surv(futime, status)~ x + tt(age), tdata, weights=casewt,
+ tt= function(x, t, ...) ns2(x+t))
> fit3b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2,
+ weights=casewt)
> aeq(coef(fit3a), coef(fit3b))
[1] TRUE
> aeq(vcov(fit3a), vcov(fit3b))
[1] TRUE
>
> fit4a <- coxph(Surv(futime, status)~ x + tt(age), tdata,
+ tt= function(x, t, ...) ns2(x+t), cluster=grp)
> fit4b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2,
+ cluster=grp)
> fit4c <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age) + cluster(grp),
+ data2)
> aeq(coef(fit4a), coef(fit4b))
[1] TRUE
> aeq(vcov(fit4a), vcov(fit4b))
[1] TRUE
> aeq(coef(fit4a), coef(fit4c))
[1] TRUE
> aeq(vcov(fit4a), vcov(fit4c))
[1] TRUE
>
> fit5a <- coxph(Surv(futime, status)~ x + tt(age) + offset(grp/10), tdata,
+ tt= function(x, t, ...) ns2(x+t),)
> fit5b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age)+ offset(grp/10)
+ , data=data2)
> aeq(coef(fit5a), coef(fit5b))
[1] TRUE
> aeq(vcov(fit5a), vcov(fit5b))
[1] TRUE
>
> # Check that strata is correct
> fit6a <- coxph(Surv(futime, status) ~ x + tt(age) + strata(grp), tdata,
+ tt = function(x, t, ...) (x+t)^2)
> fit6b <- coxph(Surv(tstart, futime, status) ~ x + I(c.age^2) +strata(grp), data2)
> aeq(coef(fit6a), coef(fit6b))
[1] TRUE
> aeq(vcov(fit6a), vcov(fit6b))
[1] TRUE
>
>
>
> proc.time()
user system elapsed
1.147 0.101 1.237