2025-01-12 04:36:52 +08:00

209 lines
9.1 KiB
R

library(survival)
aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...)
# Test the survival curve for a fit with shared hazards.
# Use the pbcseq data set, and turn bilirubin into a time-dependent state with
# 4 levels, and a shared baseline hazard for the 4 transitions to death.
# The subtlety is that coefficients for a shared (proportional) baseline hazard
# are attached to a state, not to an observation.
# (A bilirubin value of <1 is normal.)
pbc1 <- pbcseq
pbc1$bili4 <- cut(pbc1$bili, c(0,1, 2,4, 100),
c("normal", "1-2", "2-4", ">4"))
ptemp <- subset(pbc1, !duplicated(id)) # first row of each
pbc2 <- tmerge(ptemp[, c("id", "age", "sex")], ptemp, id,
death= event(futime, status==2))
pbc2 <- tmerge(pbc2, pbc1, id=id, bili = tdc(day, bili),
bili4 = tdc(day, bili4), bstat = event(day, as.numeric(bili4)))
btemp <- with(pbc2, ifelse(death, 5, bstat))
# a row with the same starting and ending bili4 level is not an event
b2 <- ifelse(((as.numeric(pbc2$bili4)) == btemp), 0, btemp)
pbc2$bstat <- factor(b2, 0:5,
c("censor", "normal", "1-2", "2-4", ">4", "death"))
check1 <- survcheck(Surv(tstart, tstop, bstat) ~ 1, istate= bili4,
id = id, data=pbc2)
check1$transitions
fit2 <- coxph(list(Surv(tstart, tstop, bstat) ~ 1,
c(1:4):5 ~ age / common + shared), id= id, istate=bili4,
data=pbc2)
# Before we tackle fit2, start small with just 9 subjects, coefs fixed to
# simple values to make hand computation easier. There are no transitions
# from state 3 to death in this subset, so there is one age coefficient and
# 2 PH coefs.
pbc3 <- subset(pbc2, id < 10)
pbc3$age <- round(pbc3$age) # easier to do "by hand" sums
fit3 <- coxph(list(Surv(tstart, tstop, bstat) ~ 1,
c(1:4):5 ~ age / common + shared), x=TRUE,
id= id, istate=bili4, data=pbc3, init= c(.05, .6, 1.1), iter=0)
# a mixed p0 gives a stronger test than our usual (1, 0,0,0,0)
surv3 <- survfit(fit3, newdata=list(age=50), p0=c(.4, .3, .2, .1, 0))
etime <- sort(unique(pbc3$tstop[pbc3$bstat != "censor"]))
# At event time 1 (182), all 9 are at risk, (3,3,2,1) in initial states 1-4
atrisk <- pbc3$tstart < etime[1] & pbc3$tstop >= etime[1] # all 9 at risk
table(pbc3$bili4[atrisk])
# One event occurs at 182, a 2:1 transition (1-2 to normal)
# Risk scores for the non-death transitions are all exp(0) =1,
# so the hazard matrix H will have second row of (1/3, -1/3, 0,0,0) and all
# other rows are 0.
with(subset(pbc3, tstop== 182), table(istate= bili4, state=bstat))
# The next four events are from 3:4, 3:2, 2:3, and 1:2, so also have
# simple transtions, i.e., no covariates so all risk scores are exp(0) =1
#
hmat <- array(0, dim=c(5,5,6)) # first 6 hazard matrices, start with 3,3,2,1
hmat[2,1,1] <- 1/3; hmat[2,2,1] <- -1/3 # new count= 4,2,2,1
hmat[3,4,2] <- 1/2; hmat[3,3,2] <- -1/2 # new count= 4,2,1,2
hmat[3,2,3] <- 1 ; hmat[3,3,3] <- -1 # new count= 4,3,0,2
hmat[2,3,4] <- 1/3; hmat[2,2,4] <- -1/3 # new count= 4,2,1,2
hmat[1,2,5] <- 1/4; hmat[1,1,5] <- -1/4 # new count= 3,3,1,2
# Event 6 is a transition from state 4 to death, at day 400
# For the shared hazard, the denominator is all those in states 1,2, or 4.
atrisk <- with(pbc3, tstart < etime[6] & tstop >= etime[6])
table(pbc3$bili4[atrisk]) # current states just before time 6
# The subject in state 2-4 is not considered to be at risk for a death.
# The coxph routine assumes that the set of transitions that CAN happen = the
# set that did happen at least once.
adata <- subset(pbc3, atrisk & bili4 != '2-4')
eta <- with(adata, .05*(age-50) + .6*(bili4=="1-2") + 1.1*(bili4 == ">4"))
cbind(adata[,c('id', 'age', 'tstop', 'bili4', 'bstat')], eta, risk=exp(eta))
basehaz <- 1/sum(exp(eta))
hmat[1,5,6] <- basehaz; hmat[1,1,6] <- -basehaz
hmat[2,5,6] <- basehaz * exp(.6); hmat[2,2,6] <- -basehaz*exp(.6)
hmat[4,5,6] <- basehaz * exp(1.1); hmat[4,4,6] <- -basehaz*exp(1.1)
# double check: sum of per-subject hazards at this time point = number of
# events at this time point
sum(basehaz * exp(eta)) ==1
tmat <- array(0., dim= dim(hmat)) # transition matrices
pstate <- matrix((4:0)/10, nrow=1)
for (i in 1:6) {
tmat[,,i] <- as.matrix(Matrix::expm(hmat[,,i]))
pstate <- rbind(pstate, pstate[i,]%*% tmat[,,i])
}
dtime <- which(surv3$time %in% etime) # skip censored rows
aeq(surv3$pstate[dtime[1:6],1,], pstate[-1,])
#
# A function to do the above "by hand" calculations, over all time points
# It is verified for the particular fit we did, but written for
# more generality.
# fit: a multi-state fit, with shared baselines
# istate: the inital state for each row of data
# p0: starting dist for compuation
# x0: curve for this set of covariates
#
mysurv <- function(fit, istate, p0, x0, debug=0) {
if (!inherits(fit, 'coxphms')) stop("invalid fit")
smap <- fit$smap
from <- as.numeric(sub(":.*$", "", colnames(smap)))
to <- as.numeric(sub("^.*:", "", colnames(smap)))
shared <- duplicated(smap[1,])
nshare <- sum(shared)
bcoef <- rep(1, ncol(smap)) # coefficients for shared baseline
beta <- coef(fit, matrix=TRUE)
if (nshare >0) {
# coefficients for shared baseline will be the last nshare of them
i <- seq(length=nshare, to=length(fit$coefficients))
bcoef[shared] <- exp(fit$coefficients[i])
# remove shared coef rows from beta
phrow <- apply(fit$cmap, 1, function(x) any(x %in% i))
beta <- beta[!phrow,, drop=FALSE]
}
# Make the values for istate and state match the 1:2, etc of the fit,
# i.e., the order of fit$states
# istate and state are used in tables, using factors makes sure the result
# is always the right size
nstate <- length(fit$states)
state <- factor(fit$y[,3], 1:nstate) # endpoint of a transition
if (length(istate) != nrow(fit$y)) stop ("mismatched istate")
istate <- factor(as.character(istate), fit$states)
# set up output
ntran <- ncol(smap) # number of transitions
utime <- sort(unique(fit$y[!is.na(state), 2])) # unique event times
ntime <- length(utime)
tmat <- matrix(0, nstate, nstate) # transtion matrix at this time point
pmat <- diag(nstate) # product of transitions
nrisk <- matrix(0., ntime, nstate) #number at risk
wtrisk<- matrix(0., ntime, ntran) # weighted number per transtion
nevent <- matrix(0L, ntime, nstate) # number of events of each type
pstate <- matrix(0L, ntime, nstate) # probability in state
hmat <- matrix(0., nstate, nstate) # working matrix of hazards
# eta is a matrix of (x for subject - x0) %*% coef, one row per subject,
# one column per transition
eta <- (fit$x - rep(x0, each= nrow(fit$y))) %*% beta
rwt <- exp(eta) # the risk weight for each obs
t1 <- fit$y[,1]
t2 <- fit$y[,2]
for (i in 1:ntime) {
atrisk <- (t1 < utime[i] & utime[i] <= t2) # risk set at this time
event <- which(utime[i] == t2) # potential events, at this time
nrisk[i,] <- c(table(istate[atrisk])) # number at risk in each state
nevent[i,] <- c(table(state[event]))
# The linear predictor and hence the number at risk is different for
# every transition. Also, some will not be at risk for the transition.
#
for (k in 1:ntran) {
atrisk2 <- (atrisk & (as.numeric(istate) == from[k]))
wtrisk[i,k] <- sum(rwt[atrisk2,k])
}
dtemp <- table(istate[event], state[event]) #censors don't count
# fill in hmat, one hazard at a time
hmat <- 0*hmat
for (j in unique(smap)) {
# for each baseline hazard
k <- which(smap == j) # transitons that share this hazard
deaths <- sum(dtemp[cbind(from[k], to[k])]) # total events
if (deaths==0) hmat[cbind(from[k], to[k])] <- 0 # avoid 0/0
else {
hazard <- deaths/ sum(wtrisk[i, k] * bcoef[k]) #shared baseline
hmat[cbind(from[k], to[k])] <- hazard * bcoef[k] # PH
}
}
diag(hmat) <- diag(hmat) - rowSums(hmat) # rows sum to zero
tmat <- as.matrix(Matrix::expm(hmat)) # transtion matrix
# if (i >= debug) browser()
pmat <- pmat %*% tmat
pstate[i,] <- drop(p0 %*% pmat)
}
list(time=utime, nrisk=nrisk, nevent=nevent, pstate=pstate,
wtrisk= wtrisk, P=pmat)
}
test3 <- mysurv(fit3, pbc3$bili4, p0= 4:0/10, x0 =50)
aeq(test3$pstate, surv3$pstate[match(test3$time, surv3$time),1,])
# Now with the full data set
fit2 <- coxph(list(Surv(tstart, tstop, bstat) ~ 1,
c(1:4):5 ~ age / common + shared), id= id, istate=bili4,
data=pbc2, ties='breslow', x=TRUE)
surv2 <- survfit(fit2, newdata=list(age=50), p0=c(.4, .3, .2, .1, 0))
test2 <- mysurv(fit2, pbc2$bili4, p0= 4:0/10, fit2, x0 =50)
aeq(test2$pstate, surv2$pstate[match(test2$time, surv2$time),1,])
if (FALSE){
# for testing, make a plot
xfun <- function(i) {
j <- match(test2$time[i], surv2$time)
all.equal(test2$pstate[i,], surv2$pstate[j,1,])
}
plot(surv2, col=1:5, lwd=2)
matpoints(test2$time, test2$pstate, col=1:5, pch='o')
}