2025-01-12 04:36:52 +08:00

183 lines
7.9 KiB
Plaintext

R Under development (unstable) (2024-04-17 r86441) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(survival)
>
> options(na.action=na.exclude) # preserve missings
> options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
> aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...)
>
> #
> # Test out all of the routines on a more complex data set
> #
> temp <- survfit(Surv(time, status) ~ ph.ecog, lung)
> summary(temp, times=c(30*1:11, 365*1:3))
Call: survfit(formula = Surv(time, status) ~ ph.ecog, data = lung)
1 observation deleted due to missingness
ph.ecog=0
time n.risk n.event survival std.err lower 95% CI upper 95% CI
30 60 3 0.952 0.0268 0.9012 1.000
60 58 2 0.921 0.0341 0.8562 0.990
90 56 2 0.889 0.0396 0.8146 0.970
120 56 0 0.889 0.0396 0.8146 0.970
150 55 1 0.873 0.0419 0.7946 0.959
180 52 2 0.841 0.0461 0.7553 0.936
210 48 2 0.808 0.0498 0.7164 0.912
240 45 0 0.808 0.0498 0.7164 0.912
270 38 2 0.770 0.0543 0.6709 0.884
300 33 2 0.727 0.0591 0.6203 0.853
330 29 2 0.681 0.0637 0.5670 0.818
365 22 6 0.535 0.0728 0.4100 0.699
730 5 11 0.193 0.0707 0.0943 0.396
ph.ecog=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
30 111 2 0.982 0.0124 0.9583 1.000
60 110 3 0.956 0.0193 0.9186 0.994
90 104 4 0.920 0.0255 0.8718 0.972
120 99 5 0.876 0.0310 0.8174 0.939
150 93 6 0.823 0.0359 0.7556 0.896
180 82 8 0.751 0.0407 0.6756 0.836
210 68 9 0.666 0.0450 0.5831 0.760
240 57 6 0.604 0.0474 0.5176 0.704
270 53 4 0.561 0.0487 0.4729 0.665
300 46 3 0.527 0.0495 0.4384 0.633
330 40 4 0.480 0.0504 0.3903 0.589
365 34 4 0.431 0.0509 0.3417 0.543
730 7 21 0.114 0.0388 0.0582 0.222
ph.ecog=2
time n.risk n.event survival std.err lower 95% CI upper 95% CI
30 46 5 0.9000 0.0424 0.82057 0.987
60 43 2 0.8600 0.0491 0.76900 0.962
90 40 3 0.8000 0.0566 0.69647 0.919
120 34 4 0.7174 0.0641 0.60216 0.855
150 31 3 0.6541 0.0680 0.53342 0.802
180 26 6 0.5275 0.0719 0.40385 0.689
210 21 4 0.4431 0.0717 0.32266 0.608
240 17 3 0.3766 0.0705 0.26100 0.543
270 17 0 0.3766 0.0705 0.26100 0.543
300 13 3 0.3102 0.0677 0.20223 0.476
330 11 2 0.2624 0.0651 0.16135 0.427
365 9 2 0.2147 0.0614 0.12258 0.376
730 1 6 0.0371 0.0345 0.00601 0.229
ph.ecog=3
time n.risk n.event survival std.err lower 95% CI upper 95% CI
30 1 0 1 0 1 1
60 1 0 1 0 1 1
90 1 0 1 0 1 1
> print(temp[2:3])
Call: survfit(formula = Surv(time, status) ~ ph.ecog, data = lung)
n events median 0.95LCL 0.95UCL
ph.ecog=1 113 82 306 268 429
ph.ecog=2 50 44 199 156 288
>
> temp <- survfit(Surv(time, status)~1, lung, type='fleming',
+ conf.int=.9, conf.type='log-log', error='tsiatis')
> summary(temp, times=30 *1:5)
Call: survfit(formula = Surv(time, status) ~ 1, data = lung, error = "tsiatis",
type = "fleming", conf.int = 0.9, conf.type = "log-log")
time n.risk n.event survival std.err lower 90% CI upper 90% CI
30 219 10 0.956 0.0135 0.928 0.974
60 213 7 0.926 0.0173 0.891 0.950
90 201 10 0.882 0.0213 0.842 0.913
120 189 10 0.838 0.0244 0.793 0.874
150 179 10 0.794 0.0268 0.745 0.834
>
> temp <- survdiff(Surv(time, status) ~ inst, lung, rho=.5)
> print(temp, digits=6)
Call:
survdiff(formula = Surv(time, status) ~ inst, data = lung, rho = 0.5)
n=227, 1 observation deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
inst=1 36 21.190058 17.455181 0.799149708 1.171232977
inst=2 5 3.173330 1.964395 0.744007932 0.860140808
inst=3 19 10.663476 11.958755 0.140294489 0.200472362
inst=4 4 2.245347 3.559344 0.485085848 0.677874608
inst=5 9 5.010883 4.500982 0.057765161 0.077128402
inst=6 14 8.862602 7.078516 0.449665221 0.582743947
inst=7 8 4.445647 4.416133 0.000197254 0.000253632
inst=10 4 2.901923 2.223283 0.207150016 0.249077097
inst=11 18 7.807867 9.525163 0.309611863 0.422142221
inst=12 23 14.009656 12.216768 0.263117640 0.365712493
inst=13 20 9.140983 11.863298 0.624699853 0.874238212
inst=15 6 3.170744 3.558447 0.042241456 0.057938955
inst=16 16 8.870360 9.992612 0.126038005 0.175170113
inst=21 13 9.263733 4.460746 5.171484268 6.149354145
inst=22 17 8.278566 11.971473 1.139171459 1.645863937
inst=26 6 1.627074 3.542694 1.035821659 1.286365543
inst=32 7 1.792468 2.679904 0.293869782 0.343966668
inst=33 2 0.929177 0.416202 0.632249272 0.676682390
Chisq= 15.1 on 17 degrees of freedom, p= 0.5904
>
> # verify that the zph routine does the actual score test
> dtime <- lung$time[lung$status==2]
> lung2 <- survSplit(Surv(time, status) ~ ., lung, cut=dtime)
>
> cfit1 <-coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss
+ + sex + age + strata(inst), lung)
> cfit2 <-coxph(Surv(tstart, time, status) ~ ph.ecog + ph.karno + pat.karno +
+ wt.loss + sex + age + strata(inst), lung2)
> all.equal(cfit1$loglik, cfit2$loglik)
[1] TRUE
> all.equal(coef(cfit1), coef(cfit2))
[1] TRUE
>
> # the above verifies that the data set is correct
> zp1 <- cox.zph(cfit1, transform="log")
> zp2 <- cox.zph(cfit2, transform="log")
> # everything should match but the call
> icall <- match("Call", names(zp1))
> all.equal(unclass(zp2)[-icall], unclass(zp1)[-icall])
[1] TRUE
>
> # now compute score tests one variable at a time
> ncoef <- length(coef(cfit2))
> check <- double(ncoef)
> cname <- names(coef(cfit2))
> for (i in 1:ncoef) {
+ temp <- log(lung2$time) * lung2[[cname[i]]]
+ # score test for this new variable
+ tfit <- coxph(Surv(tstart, time, status) ~ ph.ecog + ph.karno + pat.karno +
+ wt.loss + sex + age + strata(inst) +
+ temp, lung2, init=c(cfit2$coefficients, 0), iter=0)
+ check[i] <- tfit$score
+ }
> aeq(check, zp1$table[1:ncoef,1]) # skip the 'global' test
[1] TRUE
>
> #
> # Tests of using "."
> #
> fit1 <- coxph(Surv(time, status) ~ . - meal.cal - wt.loss - inst, lung)
> fit2 <- update(fit1, .~. - ph.karno)
> fit3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog + pat.karno, lung)
> all.equal(fit2, fit3)
[1] TRUE
>
> proc.time()
user system elapsed
0.732 0.036 0.765