2025-01-12 00:52:51 +08:00

2578 lines
96 KiB
Plaintext

R version 4.3.2 Patched (2024-02-13 r85897) -- "Eye Holes"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin22.6.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #### For both 'Extract' ("[") and 'Replace' ("[<-") Method testing
> #### aka subsetting and subassignment
> #### ~~~~~~~~~~ ~~~~~~~~~~~~~
>
> ## for R_DEFAULT_PACKAGES=NULL :
> library(stats)
> library(utils)
>
> if(interactive()) {
+ options(error = recover, warn = 1)
+ } else if(FALSE) { ## MM / developer testing *manually* :
+ options(error = recover, Matrix.verbose = 2, warn = 1)
+ } else {
+ options( Matrix.verbose = 2, warn = 1)
+ }
> ## Matrix.verbose = .. (*before* loading 'Matrix' pkg)
> ## ==> will also show method dispath ambiguity messages: getOption("ambiguousMethodSelection")
>
> #### suppressPackageStartupMessages(...) as we have an *.Rout.save to Rdiff against
> suppressPackageStartupMessages(library(Matrix))
>
> source(system.file("test-tools.R", package = "Matrix"), keep.source = FALSE)
Loading required package: tools
> ##-> identical3() etc
> cat("doExtras:",doExtras,"\n")
doExtras: FALSE
> if(exists("Sys.setLanguage", mode="function"))
+ Sys.setLanguage("en")
> englishMsgs <- (lang <- Sys.getenv("LANGUAGE")) %in% c("en", "C")
> cat(sprintf("LANGUAGE env.: '%s'; englishMsgs: %s\n",
+ lang, englishMsgs))
LANGUAGE env.: 'en'; englishMsgs: TRUE
>
> ### Dense Matrices
>
> m <- Matrix(1:28 +0, nrow = 7)
> validObject(m)
[1] TRUE
> stopifnot(identical(m, m[]),
+ identical(m[2, 3], 16), # simple number
+ identical(m[2, 3:4], c(16,23)), # simple numeric of length 2
+ identical(m[NA,NA], as(Matrix(NA, 7,4), "dMatrix")))
>
> m[2, 3:4, drop=FALSE] # sub matrix of class 'dgeMatrix'
1 x 2 Matrix of class "dgeMatrix"
[,1] [,2]
[1,] 16 23
> m[-(4:7), 3:4] # ditto; the upper right corner of 'm'
3 x 2 Matrix of class "dgeMatrix"
[,1] [,2]
[1,] 15 22
[2,] 16 23
[3,] 17 24
>
> ## rows or columns only:
> m[1,] # first row, as simple numeric vector
[1] 1 8 15 22
> m[,2] # 2nd column
[1] 8 9 10 11 12 13 14
> m[,1:2] # sub matrix of first two columns
7 x 2 Matrix of class "dgeMatrix"
[,1] [,2]
[1,] 1 8
[2,] 2 9
[3,] 3 10
[4,] 4 11
[5,] 5 12
[6,] 6 13
[7,] 7 14
> m[-(1:6),, drop=FALSE] # not the first 6 rows, i.e. only the 7th
1 x 4 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4]
[1,] 7 14 21 28
> m[integer(0),] #-> 0 x 4 Matrix
0 x 4 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4]
> m[2:4, numeric(0)] #-> 3 x 0 Matrix
3 x 0 Matrix of class "dgeMatrix"
[1,]
[2,]
[3,]
>
> ## logical indexing
> stopifnot(identical(m[2,3], m[(1:nrow(m)) == 2, (1:ncol(m)) == 3]),
+ identical(m[2,], m[(1:nrow(m)) == 2, ]),
+ identical(m[,3:4], m[, (1:4) >= 3]))
>
> ## dimnames indexing:
> mn <- m
> dimnames(mn) <- list(paste("r",letters[1:nrow(mn)],sep=""),
+ LETTERS[1:ncol(mn)])
> checkMatrix(mn)
norm(m [7 x 4]) : 1 I F M ok
Summary: ok
2*m =?= m+m: identical
m >= m for all: ok
m < m for none: ok
> mn["rd", "D"]
[1] 25
> msr <- ms <- as(mn,"sparseMatrix")
> mnr <- mn
> v <- rev(as(ms, "vector"))
> mnr[] <- v
> msr[] <- v # [<- "sparse" -- not very sensical; did fail w/o a message
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> z <- msr; z[] <- 0
> zz <- as(array(0, dim(z)), "sparseMatrix")
> a.m <- as(mnr,"matrix")
> stopifnot(identical(mn["rc", "D"], mn[3,4]), mn[3,4] == 24,
+ identical(mn[, "A"], mn[,1]), mn[,1] == 1:7,
+ identical(mn[c("re", "rb"), "B"], mn[c(5,2), 2]),
+ identical(ms["rc", "D"], ms[3,4]), ms[3,4] == 24,
+ identical(ms[, "A"], ms[,1]), ms[,1] == 1:7,
+ identical(ms[ci <- c("re", "rb"), "B"], ms[c(5,2), 2]),
+ identical(rownames(mn[ci, ]), ci),
+ identical(rownames(ms[ci, ]), ci),
+ identical(colnames(mn[,cj <- c("B","D")]), cj),
+ identical(colnames(ms[,cj]), cj),
+ identical(a.m, as(msr,"matrix")),
+ identical(unname(z), zz),
+ identical(a.m, array(v, dim=dim(mn), dimnames=dimnames(mn)))
+ )
> showProc.time()
Time (user system elapsed): 0.164 0.007 0.171
>
> ## Bug found thanks to Timothy Mak, Feb 3, 2017:
> ## sparseMatrix logical indexing with (partial) NA:
> a.m <- as(mn,"matrix")
> assert.EQ(as(ms,"matrix"), a.m) # incl. dimnames
> iN4 <- c(NA, TRUE, FALSE, TRUE)
> assert.EQ(as(mn[,iN4],"matrix"), a.m[,iN4]) # (incl. dimnames)
> ##assert.EQ(as.matrix(ms[,iN4]), a.m[,iN4]) # ms[, <with_NA>] fails still : _FIXME_
> try(ms[,iN4])
Error in ..subscript.2ary(x, l[[1L]], l[[2L]], drop = drop[1L]) :
NA subscripts in x[i,j] not supported for 'x' inheriting from sparseMatrix
> try(ms[,iN4] <- 100) ## <- segfaulted in Matrix <= 1.2-8 (!)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
Error in intI(i, n = di[margin], dn = dn[[margin]], give.dn = FALSE) :
'NA' indices are not (yet?) supported for sparse Matrices
>
> ## R-forge Matrix bug #2556: Subsetting a sparse matrix did remove names(dimnames(.)) :
> m44 <- matrix(1:16, 4, 4, dimnames=list(row=c('a','b','c','d'), col=c('x','y','z','w')))
> ## Dense matrix: ------------------------------------------
> a <- Matrix(m44)
> identical(
+ dimnames(m44[,FALSE, drop=FALSE]),
+ dimnames( a[,FALSE, drop=FALSE]))
[1] TRUE
> chk.ndn <- function(a, a0=m44)
+ stopifnot(identical(names(dimnames(a)), names(dimnames(a0))))
> i <- 1:2
> chk.ndn(a[i,]); chk.ndn(a[i, i])
> ## Sparse matrix: -----------------------------------------
> s <- as(a %% 3 == 1, "sparseMatrix")
> ts <- as(s,"TsparseMatrix")
> b <- sparseMatrix(i=1:3, j=rep(2,3), dims=c(4,4), dimnames=dimnames(s))
> tb <- as(b,"TsparseMatrix")
> stopifnot(identical5(
+ dimnames(a), dimnames(s), dimnames(ts),
+ dimnames(b), dimnames(tb)))
>
> chk.ndn(b [i, i]); chk.ndn(b [i, ])
> chk.ndn(s [i, i]); chk.ndn(s [i, ])
> chk.ndn(tb[i, i]); chk.ndn(tb[i, ])
> chk.ndn(ts[i, i]); chk.ndn(ts[i, ])
> chk.ndn( b[ , 1, drop=FALSE]); chk.ndn( s[i, 2, drop=FALSE])
> chk.ndn(tb[ , 1, drop=FALSE]); chk.ndn(ts[i, 2, drop=FALSE])
>
> L0 <- logical(0)
> stopifnot(exprs = {
+ identical(dim(b[,L0]), c(4L, 0L))
+ identical(dim(b[L0,]), c(0L, 4L)) # failed till 2019-09-x
+ })
>
> ## Printing sparse colnames:
> ms[sample(28, 20)] <- 0
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> ms <- t(rbind2(ms, 3*ms))
> cnam1 <- capture.output(show(ms))[2] ; op <- options("sparse.colnames" = "abb3")
[[ suppressing 14 column names 'ra', 'rb', 'rc' ... ]]
> cnam2 <- capture.output(show(ms))[2] ; options(op) # revert
> stopifnot(## sparse printing
+ grep("^ +$", cnam1) == 1, # cnam1 is empty
+ identical(cnam2,
+ paste(" ", paste(rep(rownames(mn), 2), collapse=" "))))
>
> mo <- m
> m[2,3] <- 100
> m[1:2, 4] <- 200
> m[, 1] <- -1
> m[1:3,]
3 x 4 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4]
[1,] -1 8 15 200
[2,] -1 9 100 200
[3,] -1 10 17 24
>
> m. <- as(m, "matrix")
>
> ## m[ cbind(i,j) ] indexing:
> iN <- ij <- cbind(1:6, 2:3)
> iN[2:3,] <- iN[5,2] <- NA
> stopifnot(identical(m[ij], m.[ij]),
+ identical(m[iN], m.[iN]))
>
> ## testing operations on logical Matrices rather more than indexing:
> g10 <- m [ m > 10 ]
> stopifnot(18 == length(g10))
> stopifnot(10 == length(m[ m <= 10 ]))
> sel <- (20 < m) & (m < 150)
> sel.<- (20 < m.)& (m.< 150)
> nsel <-(20 >= m) | (m >= 150)
> (ssel <- as(sel, "sparseMatrix"))
7 x 4 sparse Matrix of class "lgCMatrix"
[1,] . . . .
[2,] . . | .
[3,] . . . |
[4,] . . . |
[5,] . . . |
[6,] . . . |
[7,] . . | |
> stopifnot(is(sel, "lMatrix"), is(ssel, "lsparseMatrix"),
+ identical3(as.mat(sel.), as.mat(sel), as.mat(ssel)),
+ identical3(!sel, !ssel, nsel), # !<sparse> is typically dense
+ identical3(m[ sel], m[ ssel], as(m, "matrix")[as( ssel, "matrix")]),
+ identical3(m[!sel], m[!ssel], as(m, "matrix")[as(!ssel, "matrix")])
+ )
> showProc.time()
Time (user system elapsed): 0.044 0.001 0.045
>
> ## more sparse Matrices --------------------------------------
>
> ##' @title Check sparseMatrix sub-assignment m[i,j] <- v
> ##' @param ms sparse Matrix
> ##' @param mm its [traditional matrix]-equivalent
> ##' @param k (approximate) length of index vectors (i,j)
> ##' @param n.uniq (approximate) number of unique values in i,j
> ##' @param vRNG function(n) for random 'v' generation
> ##' @param show logical; if TRUE, it will not stop on error
> ##' @return
> ##' @author Martin Maechler
> chkAssign <- function(ms, mm = as(ms, "matrix"),
+ k = min(20,dim(mm)), n.uniq = k %/% 3,
+ vRNG = { if(is.numeric(mm) || is.complex(mm))
+ function(n) rpois(n,lambda= 0.75)# <- about 47% zeros
+ else ## logical
+ function(n) runif(n) > 0.8 }, ## 80% zeros
+ showOnly=FALSE)
+ {
+ stopifnot(is(ms,"sparseMatrix"))
+ d <- dim(ms)
+ s1 <- function(n) sample(n, pmin(n, pmax(1, rpois(1, n.uniq))))
+ i <- sample(s1(d[1]), k/2+ rpois(1, k/2), replace = TRUE)
+ j <- sample(s1(d[2]), k/2+ rpois(1, k/2), replace = TRUE)
+ assert.EQ.mat(ms[i,j], mm[i,j])
+ ms2 <- ms. <- ms; mm. <- mm # save
+ ## now sub*assign* to these repeated indices, and then compare -----
+ v <- vRNG(length(i) * length(j))
+ mm[i,j] <- v
+ ms[i,j] <- v
+ ## useful to see (ii,ij), but confusing R/ESS when additionally debugging:
+ ## if(!showOnly && interactive()) { op <- options(error = recover); on.exit(options(op)) }
+ assert.EQ.mat(ms, mm, showOnly=showOnly)
+ ## vector indexing m[cbind(i,j)] == m[i + N(j-1)] , N = nrow(.)
+ ii <- seq_len(min(length(i), length(j)))
+ i <- i[ii]
+ j <- j[ii]
+ ij <- cbind(i, j)
+ ii <- i + nrow(ms)*(j - 1)
+ ord.i <- order(ii)
+ iio <- ii[ord.i]
+ ui <- unique(iio) # compare these with :
+ neg.ii <- - setdiff(seq_len(prod(d)), ii)
+ stopifnot(identical(mm[ii], mm[ij]),
+ identical(ms.[ui], ms.[neg.ii]),
+ ms.[ij] == mm.[ii], ## M[ cbind(i,j) ] was partly broken; now checking
+ ms.[ii] == mm.[ii])
+ v <- v[seq_len(length(i))]
+ if(is(ms,"nMatrix")) v <- as.logical(v) # !
+ mm.[ij] <- v
+ ms.[ii] <- v
+ nodup <- (length(ui) == length(ii)) ## <==> ! anyDuplicated(iio)
+ if(nodup) { cat("[-]") # rare, unfortunately
+ ms2[neg.ii] <- v[ord.i]
+ stopifnot(identical(ms2, ms.))
+ }
+ assert.EQ.mat(ms., mm., showOnly=showOnly)
+ } ##{chkAssign}
>
> ## Get duplicated index {because these are "hard" (and rare)
> getDuplIndex <- function(n, k) {
+ repeat {
+ i <- sample(n, k, replace=TRUE) # 3 4 6 9 2 9 : 9 is twice
+ if(anyDuplicated(i)) break
+ }
+ i
+ }
>
> suppressWarnings(RNGversion("3.5.0")); set.seed(101)
> m <- 1:800
> m[sample(800, 600)] <- 0
> m0 <- Matrix(m, nrow = 40)
> m1 <- add.simpleDimnames(m0)
> for(kind in c("n", "l", "d")) {
+ for(m in list(m0,m1)) { ## -- with and without dimnames -------------------------
+ kClass <-paste0(kind, "Matrix" )
+ Ckind <- paste0(kind, "gCMatrix")
+ Tkind <- paste0(kind, "gTMatrix")
+ str(mC <- as(as(as(m, kClass), "CsparseMatrix"), "generalMatrix")) # was as(m, Ckind) deprecated
+ #was mT <- as(as(as(m, kClass), "TsparseMatrix"), Tkind))
+ str(mT <- as(as(as(m, kClass), "generalMatrix"), "TsparseMatrix"))
+ mm <- as(mC, "matrix") # also logical or double
+ IDENT <- if(kind == "n") function(x,y) Q.eq2(x,y, tol=0) else identical
+ stopifnot(exprs = {
+ identical(mT, as(mC, "TsparseMatrix"))
+ identical(mC, as(mT, "CsparseMatrix")) # was Ckind; now deprecated
+ Qidentical(mC[0,0], new(Ckind)) # M..3 Csp..4
+ Qidentical(mT[0,0], new(Tkind)) # "
+ identical(unname(mT[0,]), new(Tkind, Dim = c(0L,ncol(m))))# M.3 T.4 C.4
+ identical(unname(mT[,0]), new(Tkind, Dim = c(nrow(m),0L)))# M.3 C.4
+ is.null(cat("IDENT():\n"))
+ IDENT(mC[0,], as(mT[FALSE,], "CsparseMatrix")) # M.3 C.4 M.3 + Tsp..4 Csp..4 | as(., Ckind) deprecated
+ IDENT(mC[,0], as(mT[,FALSE], "CsparseMatrix")) # M.3 C.4 M.3 C.4 | as(., Ckind) deprecated
+ is.null(cat("sapply(..):\n"))
+ sapply(pmin(min(dim(mC)), c(0:2, 5:10)),
+ function(k) {i <- seq_len(k); all(mC[i,i] == mT[i,i])})
+ })
+ cat("ok\n")
+ show(mC[,1])
+ show(mC[1:2,])
+ show(mC[7, drop = FALSE])
+ assert.EQ.mat(mC[1:2,], mm[1:2,])
+ assert.EQ.mat(mC[0,], mm[0,])
+ assert.EQ.mat(mC[,FALSE], mm[,FALSE])
+ ##
+ ## *repeated* (aka 'duplicated') indices - did not work at all ...
+ i <- pmin(nrow(mC), rep(8:10,2))
+ j <- c(2:4, 4:3)
+ assert.EQ.mat(mC[i,], mm[i,])
+ assert.EQ.mat(mC[,j], mm[,j])
+ ## FIXME? assert.EQ.mat(mC[,NA], mm[,NA]) -- mC[,NA] is all 0 "instead" of all NA
+ ## MM currently thinks we should NOT allow <sparse>[ <NA> ]
+ assert.EQ.mat(mC[i, 2:1], mm[i, 2:1])
+ assert.EQ.mat(mC[c(4,1,2:1), j], mm[c(4,1,2:1), j])
+ assert.EQ.mat(mC[i,j], mm[i,j])
+ ##
+ ## set.seed(7)
+ op <- options(Matrix.verbose = FALSE)
+ cat(" for(): ")
+ for(n in 1:(if(doExtras) 50 else 5)) { # (as chkAssign() is random)
+ chkAssign(mC, mm)
+ chkAssign(mC[-3,-2], mm[-3,-2])
+ cat(".")
+ }
+ options(op)
+ cat(sprintf("\n[Ok]%s\n\n", strrep("-", 64)))
+ }
+ cat(sprintf("\nok( %s )\n== ###%s\n\n", kind, strrep("=", 70)))
+ }## end{for}---------------------------------------------------------------
Formal class 'ngCMatrix' [package "Matrix"] with 5 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ p : int [1:21] 0 8 22 28 37 41 50 63 71 81 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ factors : list()
Formal class 'ngTMatrix' [package "Matrix"] with 5 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ j : int [1:200] 0 0 0 0 0 0 0 0 1 1 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ factors : list()
IDENT():
sapply(..):
ok
[1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[25] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE TRUE TRUE FALSE
2 x 20 sparse Matrix of class "ngCMatrix"
[1,] . . . | . . | . . . . | . . | . | . . .
[2,] . | . . . | . . . . . . | | . . . . | .
[1] TRUE
for(): .....
[Ok]----------------------------------------------------------------
Formal class 'ngCMatrix' [package "Matrix"] with 5 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ p : int [1:21] 0 8 22 28 37 41 50 63 71 81 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : chr [1:40] "r1" "r2" "r3" "r4" ...
.. ..$ : chr [1:20] "c1" "c2" "c3" "c4" ...
..@ factors : list()
Formal class 'ngTMatrix' [package "Matrix"] with 5 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ j : int [1:200] 0 0 0 0 0 0 0 0 1 1 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : chr [1:40] "r1" "r2" "r3" "r4" ...
.. ..$ : chr [1:20] "c1" "c2" "c3" "c4" ...
..@ factors : list()
IDENT():
sapply(..):
ok
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13
FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39
FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
r40
FALSE
2 x 20 sparse Matrix of class "ngCMatrix"
[[ suppressing 20 column names 'c1', 'c2', 'c3' ... ]]
r1 . . . | . . | . . . . | . . | . | . . .
r2 . | . . . | . . . . . . | | . . . . | .
[1] TRUE
for(): .....
[Ok]----------------------------------------------------------------
ok( n )
== ###======================================================================
Formal class 'lgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ p : int [1:21] 0 8 22 28 37 41 50 63 71 81 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ x : logi [1:200] TRUE TRUE TRUE TRUE TRUE TRUE ...
..@ factors : list()
Formal class 'lgTMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ j : int [1:200] 0 0 0 0 0 0 0 0 1 1 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ x : logi [1:200] TRUE TRUE TRUE TRUE TRUE TRUE ...
..@ factors : list()
IDENT():
sapply(..):
ok
[1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[25] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE TRUE TRUE FALSE
2 x 20 sparse Matrix of class "lgCMatrix"
[1,] . . . | . . | . . . . | . . | . | . . .
[2,] . | . . . | . . . . . . | | . . . . | .
[1] TRUE
for(): .....
[Ok]----------------------------------------------------------------
Formal class 'lgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ p : int [1:21] 0 8 22 28 37 41 50 63 71 81 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : chr [1:40] "r1" "r2" "r3" "r4" ...
.. ..$ : chr [1:20] "c1" "c2" "c3" "c4" ...
..@ x : logi [1:200] TRUE TRUE TRUE TRUE TRUE TRUE ...
..@ factors : list()
Formal class 'lgTMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ j : int [1:200] 0 0 0 0 0 0 0 0 1 1 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : chr [1:40] "r1" "r2" "r3" "r4" ...
.. ..$ : chr [1:20] "c1" "c2" "c3" "c4" ...
..@ x : logi [1:200] TRUE TRUE TRUE TRUE TRUE TRUE ...
..@ factors : list()
IDENT():
sapply(..):
ok
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13
FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26
FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39
FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
r40
FALSE
2 x 20 sparse Matrix of class "lgCMatrix"
[[ suppressing 20 column names 'c1', 'c2', 'c3' ... ]]
r1 . . . | . . | . . . . | . . | . | . . .
r2 . | . . . | . . . . . . | | . . . . | .
[1] TRUE
for(): .....
[Ok]----------------------------------------------------------------
ok( l )
== ###======================================================================
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ p : int [1:21] 0 8 22 28 37 41 50 63 71 81 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ x : num [1:200] 3 7 12 22 25 30 38 39 42 45 ...
..@ factors : list()
Formal class 'dgTMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ j : int [1:200] 0 0 0 0 0 0 0 0 1 1 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ x : num [1:200] 3 7 12 22 25 30 38 39 42 45 ...
..@ factors : list()
IDENT():
sapply(..):
ok
[1] 0 0 3 0 0 0 7 0 0 0 0 12 0 0 0 0 0 0 0 0 0 22 0 0 25
[26] 0 0 0 0 30 0 0 0 0 0 0 0 38 39 0
2 x 20 sparse Matrix of class "dgCMatrix"
[1,] . . . 121 . . 241 . . . . 441 . . 561 . 641 . . .
[2,] . 42 . . . 202 . . . . . . 482 522 . . . . 722 .
[1] 7
for(): .....
[Ok]----------------------------------------------------------------
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ p : int [1:21] 0 8 22 28 37 41 50 63 71 81 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : chr [1:40] "r1" "r2" "r3" "r4" ...
.. ..$ : chr [1:20] "c1" "c2" "c3" "c4" ...
..@ x : num [1:200] 3 7 12 22 25 30 38 39 42 45 ...
..@ factors : list()
Formal class 'dgTMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:200] 2 6 11 21 24 29 37 38 1 4 ...
..@ j : int [1:200] 0 0 0 0 0 0 0 0 1 1 ...
..@ Dim : int [1:2] 40 20
..@ Dimnames:List of 2
.. ..$ : chr [1:40] "r1" "r2" "r3" "r4" ...
.. ..$ : chr [1:20] "c1" "c2" "c3" "c4" ...
..@ x : num [1:200] 3 7 12 22 25 30 38 39 42 45 ...
..@ factors : list()
IDENT():
sapply(..):
ok
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
0 0 3 0 0 0 7 0 0 0 0 12 0 0 0 0 0 0 0 0
r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40
0 22 0 0 25 0 0 0 0 30 0 0 0 0 0 0 0 38 39 0
2 x 20 sparse Matrix of class "dgCMatrix"
[[ suppressing 20 column names 'c1', 'c2', 'c3' ... ]]
r1 . . . 121 . . 241 . . . . 441 . . 561 . 641 . . .
r2 . 42 . . . 202 . . . . . . 482 522 . . . . 722 .
[1] 7
for(): .....
[Ok]----------------------------------------------------------------
ok( d )
== ###======================================================================
> showProc.time()
Time (user system elapsed): 0.21 0.008 0.218
>
> if(doExtras) {### {was ./AAA_index.R, MM-only}
+ ## an nsparse-example
+ A <- Matrix(c(rep(c(1,0,0),2), rep(c(2,0),7), c(0,0,2), rep(0,4)), 3,9)
+ i <- c(3,1:2)
+ j <- c(3, 5, 9, 5, 9)
+ vv <- logical(length(i)*length(j)); vv[6:9] <- TRUE
+
+ print(An <- as(A,"nMatrix")); an <- as(An, "matrix")
+ assert.EQ.mat(An, an)
+ An[i, j] <- vv
+ an[i, j] <- vv
+ assert.EQ.mat(An, an)## error
+ if(!all(An == an)) show(drop0(An - an))
+ ## all are +1
+
+ options("Matrix.subassign.verbose" = TRUE)# output from C
+ An <- as(A,"nMatrix"); An[i, j] <- vv
+ ## and compare with this:
+ Al <- as(A,"lMatrix"); Al[i, j] <- vv
+ options("Matrix.subassign.verbose" = FALSE)
+
+ ##--- An interesting not small not large example for M[i,j] <- v ------------
+ ##
+ M <- Matrix(c(1, rep(0,7), 1:4), 3,4)
+ N0 <- kronecker(M,M)
+ mkN1 <- function(M) {
+ stopifnot(length(d <- dim(M)) == 2)
+ isC <- is(M,"CsparseMatrix")
+ M[,d[2]] <- c(0,2,0)
+ N <- kronecker(diag(x=1:2), M)## remains sparse if 'M' is
+ if(isC) N <- as(N, "CsparseMatrix")
+ diag(N[-1,]) <- -2
+ N[9,] <- 1:4 # is recycled
+ N[,12] <- -7:-9 # ditto
+ N
+ }
+
+ show(N1 <- t(N <- mkN1(N0))) # transpose {for display reasons}
+ C1 <- t(C <- mkN1(as(N0,"CsparseMatrix")))
+ stopifnot(all(C == N))
+ assert.EQ.mat(C, mkN1(as(N0, "matrix")))
+
+ C. <- C1
+ show(N <- N1) ; n <- as(N, "matrix"); str(N)
+ sort(i <- c(6,8,19,11,21,20,10,7,12,9,5,18,17,22,13))## == c(5:13, 17:22))
+ sort(j <- c(3,8,6,15,10,4,14,13,16,2,11,17,7,5))## == c(2:8, 10:11, 13:17)
+ val <- v.l <- 5*c(0,6,0,7,0,0,8:9, 0,0)
+ show(spv <- as(val, "sparseVector")); str(spv)
+
+ n [i,j] <- v.l
+ N [i,j] <- val# is recycled, too
+ C.[i,j] <- val
+ assert.EQ.mat(N,n) ; stopifnot(all(C. == N))
+ ## and the same *again*:
+ n [i,j] <- v.l
+ N [i,j] <- val
+ C.[i,j] <- val
+ assert.EQ.mat(N,n)
+ stopifnot(all(C. == N))
+
+ print(load(system.file("external", "symA.rda", package="Matrix"))) # "As"
+ stopifnotValid(As, "dsCMatrix"); stopifnot(identical(As@factors, list()))
+ R. <- drop0(chol(As))
+ stopifnot(exprs = {
+ 1:32 == sort(diag(R.)) ## !
+ R.@x > 0
+ R.@x == as.integer(R.@x)## so it is an integer-valued chol-decomp !
+ ## shows that (1) As is *not* singular (2) the matrix is not random
+ all.equal(crossprod(R.), As, tolerance=1e-15)
+ })
+ print(summary(evA <- eigen(As, only.values=TRUE)$values))
+ print(tail(evA)) ## largest three ~= 10^7, smallest two *negative*
+ print(rcond(As)) # 1.722 e-21 == very bad !
+ ##-> this *is* a border line case, i.e. very close to singular !
+ ## and also determinant(.) is rather random here!
+ cc0 <- Cholesky(As)# no problem
+ try({
+ cc <- Cholesky(As, super=TRUE)
+ ## gives --on 32-bit only--
+ ## Cholmod error 'matrix not positive definite' at file:../Supernodal/t_cholmod_super_numeric.c, line 613
+ ecc <- expand(cc)
+ L.P <- with(ecc, crossprod(L,P)) ## == L'P
+ ## crossprod(L.P) == (L'P)' L'P == P'LL'P
+ stopifnot( all.equal(crossprod(L.P), As) )
+ })
+ ##---- end{ eigen( As ) -----------
+
+ } ## only if(doExtras)
>
>
> ##---- Symmetric indexing of symmetric Matrix ----------
> m. <- mC
> m.[, c(2, 7:12)] <- 0
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
> stopifnotValid(S <- crossprod(add.simpleDimnames(m.) %% 100), "dsCMatrix")
> ss <- as(S, "matrix")
> ds <- as(S, "denseMatrix")
> ## NA-indexing of *dense* Matrices: should work as traditionally
> assert.EQ.mat(ds[NA,NA], ss[NA,NA])
> assert.EQ.mat(ds[NA, ], ss[NA,])
> assert.EQ.mat(ds[ ,NA], ss[,NA])
> T <- as(S, "TsparseMatrix")
> stopifnot(identical(ds[2 ,NA], ss[2,NA]),
+ identical(ds[NA, 1], ss[NA, 1]),
+ identical(S, as(T, "CsparseMatrix")) )
>
> ## non-repeated indices:
> i <- c(7:5, 2:4);assert.EQ.mat(T[i,i], ss[i,i])
> ## NA in indices -- check that we get a helpful error message:
> i[2] <- NA
> er <- tryCatch(T[i,i], error = function(e)e)
> if(englishMsgs)
+ stopifnot(as.logical(grep("indices.*sparse Matrices", er$message)))
>
> N <- nrow(T)
> set.seed(11)
> for(n in 1:(if(doExtras) 50 else 3)) {
+ i <- sample(N, max(2, sample(N,1)), replace = FALSE)
+ validObject(Tii <- T[i,i]) ; tTi <- t(T)[i,i]
+ stopifnot(is(Tii, "dsTMatrix"), # remained symmetric Tsparse
+ is(tTi, "dsTMatrix"), # may not be identical when *sorted* differently
+ identical(as(t(Tii),"CsparseMatrix"), as(tTi,"CsparseMatrix")))
+ assert.EQ.mat(Tii, ss[i,i])
+ }
>
> b <- diag(1:2)[,c(1,1,2,2)]
> cb <- crossprod(b)
> cB <- crossprod(Matrix(b, sparse=TRUE))
> a <- matrix(0, 6, 6)
> a[1:4, 1:4] <- cb
> A1 <- A2 <- Matrix(0, 6, 6)#-> ddiMatrix
> A1[1:4, 1:4] <- cb
replCmat[x,i,j,..,val] : nargs()=4;
> A2[1:4, 1:4] <- cB
replCmat[x,i,j,..,val] : nargs()=4;
> assert.EQ.mat(A1, a)# indeed
> ## "must": symmetric and sparse, i.e., ds*Matrix:
> stopifnot(identical(A1, A2), is(A1, "dsCMatrix"))
>
> ## repeated ones ``the challenge'' (to do smartly):
> j <- c(4, 4, 9, 12, 9, 4, 17, 3, 18, 4, 12, 18, 4, 9)
> assert.EQ.mat(T[j,j], ss[j,j])
> ## and another two sets (a, A) & (a., A.) :
> a <- matrix(0, 6,6)
> a[upper.tri(a)] <- (utr <- c(2, 0,-1, 0,0,5, 7,0,0,0, 0,0,-2,0,8))
> ta <- t(a); ta[upper.tri(a)] <- utr; a <- t(ta)
> diag(a) <- c(0,3,0,4,6,0)
> A <- as(Matrix(a), "TsparseMatrix")
> A. <- A
> diag(A.) <- 10 * (1:6)
> a. <- as(A., "matrix")
> ## More testing {this was not working for a long time..}
> set.seed(1)
> for(n in 1:(if(doExtras) 100 else 6)) {
+ i <- sample(1:nrow(A), 3+2*rpois(1, lambda=3), replace=TRUE)
+ Aii <- A[i,i]
+ A.ii <- A.[i,i]
+ stopifnot(class(Aii) == class(A),
+ class(A.ii) == class(A.))
+ assert.EQ.mat(Aii , a [i,i])
+ assert.EQ.mat(A.ii, a.[i,i])
+ assert.EQ.mat(T[i,i], ss[i,i])
+ }
> showProc.time()
Time (user system elapsed): 0.055 0.002 0.056
>
> stopifnot(all.equal(mC[,3], mm[,3]),
+ identical(mC[ij], mC[ij + 0.4]),
+ identical(mC[ij], mm[ij]),
+ identical(mC[iN], mm[iN]))
> ## out of bound indexing must be detected:
> assertError(mC[cbind(ij[,1] - 5, ij[,2])])
> assertError(mC[cbind(ij[,1], ij[,2] + ncol(mC))])
>
> assert.EQ.mat(mC[7, , drop=FALSE], mm[7, , drop=FALSE])
> identical (mC[7, drop=FALSE], mm[7, drop=FALSE]) # *vector* indexing
[1] TRUE
>
> stopifnot(dim(mC[numeric(0), ]) == c(0,20), # used to give warnings
+ dim(mC[, integer(0)]) == c(40,0),
+ identical(mC[, integer(0)], mC[, FALSE]))
> validObject(print(mT[,c(2,4)]))
40 x 2 sparse Matrix of class "dgTMatrix"
c2 c4
r1 . 121
r2 42 .
r3 . .
r4 . .
r5 45 .
r6 . .
r7 . .
r8 . 128
r9 . 129
r10 50 .
r11 . .
r12 52 132
r13 . 133
r14 . .
r15 55 .
r16 . .
r17 . .
r18 . 138
r19 . .
r20 . .
r21 . 141
r22 . 142
r23 63 .
r24 . .
r25 65 .
r26 . .
r27 67 .
r28 68 .
r29 . .
r30 . .
r31 71 .
r32 72 .
r33 . .
r34 74 .
r35 . .
r36 76 .
r37 . .
r38 . .
r39 . 159
r40 80 .
[1] TRUE
> stopifnot(all.equal(mT[2,], mm[2,]),
+ ## row or column indexing in combination with t() :
+ Q.C.identical(mT[2,], t(mT)[,2]),
+ Q.C.identical(mT[-2,], t(t(mT)[,-2])),
+ Q.C.identical(mT[c(2,5),], t(t(mT)[,c(2,5)])) )
> assert.EQ.mat(mT[4,, drop = FALSE], mm[4,, drop = FALSE])
> stopifnot(identical3(mm[,1], mC[,1], mT[,1]),
+ identical3(mm[3,], mC[3,], mT[3,]),
+ identical3(mT[2,3], mC[2,3], 0),
+ identical(mT[], mT),
+ identical4( mm[c(3,7), 2:4], as.mat( m[c(3,7), 2:4]),
+ as.mat(mT[c(3,7), 2:4]), as.mat(mC[c(3,7), 2:4]))
+ )
>
> x.x <- crossprod(mC)
> stopifnot(class(x.x) == "dsCMatrix",
+ class(x.x. <- round(x.x / 10000)) == "dsCMatrix",
+ identical(x.x[cbind(2:6, 2:6)],
+ diag(x.x[2:6, 2:6], names=FALSE)))
> head(x.x.) # Note the *non*-structural 0's printed as "0"
6 x 20 sparse Matrix of class "dgCMatrix"
[[ suppressing 20 column names 'c1', 'c2', 'c3' ... ]]
c1 1 0 . 1 . 1 1 3 . 3 2 1 6 1 . 2 4 6 5 1
c2 0 6 2 1 3 5 7 5 12 14 14 9 11 16 12 13 17 19 19 10
c3 . 2 6 . 4 2 5 3 8 12 5 16 9 11 23 . . 6 7 7
c4 1 1 . 17 . 8 10 13 8 6 18 18 29 35 14 8 25 10 19 21
c5 . 3 4 . 14 4 10 . . 29 8 9 19 11 11 . . 26 26 16
c6 1 5 2 8 4 42 5 19 14 9 8 10 42 56 50 27 29 32 64 16
> tail(x.x., -3) # all but the first three lines
17 x 20 sparse Matrix of class "dgCMatrix"
[[ suppressing 20 column names 'c1', 'c2', 'c3' ... ]]
c4 1 1 . 17 . 8 10 13 8 6 18 18 29 35 14 8 25 10 19 21
c5 . 3 4 . 14 4 10 . . 29 8 9 19 11 11 . . 26 26 16
c6 1 5 2 8 4 42 5 19 14 9 8 10 42 56 50 27 29 32 64 16
c7 1 7 5 10 10 5 87 14 9 31 77 47 79 43 28 17 67 110 36 121
c8 3 5 3 13 . 19 14 70 10 24 37 13 59 62 34 19 58 21 64 44
c9 . 12 8 8 . 14 9 10 116 41 58 33 33 72 78 43 69 72 75 25
c10 3 14 12 6 29 9 31 24 41 167 69 56 99 44 70 24 105 82 85 32
c11 2 14 5 18 8 8 77 37 58 69 267 80 86 139 49 105 194 119 122 129
c12 1 9 16 18 9 10 47 13 33 56 80 194 70 77 81 . 90 32 . 106
c13 6 11 9 29 19 42 79 59 33 99 86 70 324 157 55 . 69 142 144 155
c14 1 16 11 35 11 56 43 62 72 44 139 77 157 375 123 102 145 39 196 81
c15 . 12 23 14 11 50 28 34 78 70 49 81 55 123 368 71 112 41 41 86
c16 2 13 . 8 . 27 17 19 43 24 105 . . 102 71 233 124 44 139 .
c17 4 17 . 25 . 29 67 58 69 105 194 90 69 145 112 124 523 141 245 100
c18 6 19 6 10 26 32 110 21 72 82 119 32 142 39 41 44 141 497 104 111
c19 5 19 7 19 26 64 36 64 75 85 122 . 144 196 41 139 245 104 542 55
c20 1 10 7 21 16 16 121 44 25 32 129 106 155 81 86 . 100 111 55 541
>
> lx.x <- as(as(x.x, "lMatrix"), "symmetricMatrix") # FALSE only for "structural" 0
> (l10 <- lx.x[1:10, 1:10])# "lsC"
10 x 10 sparse Matrix of class "lsCMatrix"
[[ suppressing 10 column names 'c1', 'c2', 'c3' ... ]]
c1 | | . | . | | | . |
c2 | | | | | | | | | |
c3 . | | . | | | | | |
c4 | | . | . | | | | |
c5 . | | . | | | . . |
c6 | | | | | | | | | |
c7 | | | | | | | | | |
c8 | | | | . | | | | |
c9 . | | | . | | | | |
c10 | | | | | | | | | |
> (l3 <- lx.x[1:3, ])
3 x 20 sparse Matrix of class "lgCMatrix"
[[ suppressing 20 column names 'c1', 'c2', 'c3' ... ]]
c1 | | . | . | | | . | | | | | . | | | | |
c2 | | | | | | | | | | | | | | | | | | | |
c3 . | | . | | | | | | | | | | | . . | | |
> m.x <- as.mat(x.x) # as.mat() *drops* (NULL,NULL) dimnames
> stopifnot(class(l10) == "lsCMatrix", # symmetric indexing -> symmetric !
+ identical(as.mat(lx.x), m.x != 0),
+ identical(as.logical(lx.x), as.logical(m.x)),
+ identical(as.mat(l10), m.x[1:10, 1:10] != 0),
+ identical(as.mat(l3 ), m.x[1:3, ] != 0)
+ )
>
> ##-- Sub*assignment* with repeated / duplicated index:
> A <- Matrix(0,4,3) ; A[c(1,2,1), 2] <- 1 ; A
replCmat[x,i,j,..,val] : nargs()=4;
4 x 3 sparse Matrix of class "dgCMatrix"
[1,] . 1 .
[2,] . 1 .
[3,] . . .
[4,] . . .
> B <- A; B[c(1,2,1), 2] <- 1:3; B; B. <- B
replCmat[x,i,j,..,val] : nargs()=4;
4 x 3 sparse Matrix of class "dgCMatrix"
[1,] . 3 .
[2,] . 2 .
[3,] . . .
[4,] . . .
> B.[3,] <- rbind(4:2)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
> ## change the diagonal and the upper and lower subdiagonal :
> diag(B.) <- 10 * diag(B.)
> diag(B.[,-1]) <- 5* diag(B.[,-1])
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
> diag(B.[-1,]) <- 4* diag(B.[-1,]) ; B.
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
4 x 3 sparse Matrix of class "dgCMatrix"
[1,] . 15 .
[2,] . 20 .
[3,] 4 12 20
[4,] . . .
> C <- B.; C[,2] <- C[,2]; C[1,] <- C[1,]; C[2:3,2:1] <- C[2:3,2:1]
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4;
> stopifnot(identical(unname(as(A, "matrix")),
+ local({a <- matrix(0,4,3); a[c(1,2,1), 2] <- 1 ; a})),
+ identical(unname(as(B, "matrix")),
+ local({a <- matrix(0,4,3); a[c(1,2,1), 2] <- 1:3; a})),
+ identical(C, drop0(B.)))
> ## <sparse>[<logicalSparse>] <- v failed in the past
> T <- as(C,"TsparseMatrix"); C. <- C
> T[T>0] <- 21
.TM.repl.i.mat(): "lMatrix" case ...
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> C[C>0] <- 21
.TM.repl.i.mat(): "lMatrix" case ...
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> a. <- local({a <- as(C., "matrix"); a[a>0] <- 21; a})
> assert.EQ.mat(C, a.)
> stopifnot(identical(C, as(T, "CsparseMatrix")))
>
> ## used to fail
> n <- 5 ## or much larger
> sm <- new("dsTMatrix", i=1L, j=1L, Dim=as.integer(c(n,n)), x = 1)
> (cm <- as(sm, "CsparseMatrix"))
5 x 5 sparse Matrix of class "dsCMatrix"
[1,] . . . . .
[2,] . 1 . . .
[3,] . . . . .
[4,] . . . . .
[5,] . . . . .
> sm[2,]
[1] 0 1 0 0 0
> stopifnot(sm[2,] == c(0:1, rep.int(0,ncol(sm)-2)),
+ sm[2,] == cm[2,],
+ sm[,3] == sm[3,],
+ all(sm[,-(1:3)] == t(sm[-(1:3),])), # all(<lge.>)
+ all(sm[,-(1:3)] == 0)
+ )
> showProc.time()
Time (user system elapsed): 0.049 0.003 0.053
>
> ##--- "nsparse*" sub-assignment :----------
> M <- Matrix(c(1, rep(0,7), 1:4), 3,4)
> N0 <- kronecker(M,M)
> Nn <- as(N0, "nMatrix"); nn <- as(Nn,"matrix")
> (Nn00 <- Nn0 <- Nn); nn00 <- nn0 <- nn
9 x 16 sparse Matrix of class "ngCMatrix"
[1,] | . . | . . . . . . . . | . . |
[2,] . . . | . . . . . . . . . . . |
[3,] . . | | . . . . . . . . . . | |
[4,] . . . . . . . . . . . . | . . |
[5,] . . . . . . . . . . . . . . . |
[6,] . . . . . . . . . . . . . . | |
[7,] . . . . . . . . | . . | | . . |
[8,] . . . . . . . . . . . | . . . |
[9,] . . . . . . . . . . | | . . | |
>
> set.seed(1)
> Nn0 <- Nn00; nn0 <- nn00
> for(i in 1:(if(doExtras) 200 else 25)) {
+ Nn <- Nn0
+ nn <- nn0
+ i. <- getDuplIndex(nrow(N0), 6)
+ j. <- getDuplIndex(ncol(N0), 4)
+ vv <- sample(c(FALSE,TRUE),
+ length(i.)*length(j.), replace=TRUE)
+ cat(",")
+ Nn[i., j.] <- vv
+ nn[i., j.] <- vv
+ assert.EQ.mat(Nn, nn)
+ if(!all(Nn == nn)) {
+ cat("i=",i,":\n i. <- "); dput(i.)
+ cat("j. <- "); dput(j.)
+ cat("which(vv): "); dput(which(vv))
+ cat("Difference matrix:\n")
+ show(drop0(Nn - nn))
+ }
+ cat("k")
+ ## sub-assign double precision to logical sparseMatrices: now *with* warning:
+ ## {earlier: gave *no* warning}:
+ assertWarning(Nn[1:2,] <- -pi)
+ assertWarning(Nn[, 5] <- -pi)
+ assertWarning(Nn[2:4, 5:8] <- -pi)
+ stopifnotValid(Nn,"nsparseMatrix")
+ ##
+ cat(".")
+ if(i %% 10 == 0) cat("\n")
+ if(i == 100) {
+ Nn0 <- as(Nn0, "CsparseMatrix")
+ cat("Now: class", class(Nn0)," :\n~~~~~~~~~~~~~~~~~\n")
+ }
+ }
,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.
,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.
,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.,replCmat[x,i,j,..,val] : nargs()=4;
kreplCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
replCmat[x,i,j,..,val] : nargs()=4;
.> showProc.time()
Time (user system elapsed): 0.056 0.001 0.058
> Nn <- Nn0
> ## Check that NA is interpreted as TRUE (with a warning), for "nsparseMatrix":
> assertWarning(Nn[ii <- 3 ] <- NA); stopifnot(isValid(Nn,"nsparseMatrix"), Nn[ii])
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> assertWarning(Nn[ii <- 22:24] <- NA); stopifnot(isValid(Nn,"nsparseMatrix"), Nn[ii])
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> assertWarning(Nn[ii <- -(1:99)] <- NA); stopifnot(isValid(Nn,"nsparseMatrix"), Nn[ii])
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> assertWarning(Nn[ii <- 3:4 ] <- c(0,NA))
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> stopifnot(isValid(Nn,"nsparseMatrix"), Nn[ii] == 0:1)
> assertWarning(Nn[ii <- 25:27] <- c(0,1,NA))
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> stopifnot(isValid(Nn,"nsparseMatrix"), Nn[ii] == c(FALSE,TRUE,TRUE))
>
> m0 <- Diagonal(5)
> stopifnot(identical(m0[2,], m0[,2]),
+ identical(m0[,1], c(1,0,0,0,0)))
> ### Diagonal -- Sparse:
> (m1 <- as(m0, "TsparseMatrix")) # dtTMatrix unitriangular
5 x 5 sparse Matrix of class "dtTMatrix" (unitriangular)
[1,] I . . . .
[2,] . I . . .
[3,] . . I . .
[4,] . . . I .
[5,] . . . . I
> (m2 <- as(m0, "CsparseMatrix")) # dtCMatrix unitriangular
5 x 5 sparse Matrix of class "dtCMatrix" (unitriangular)
[1,] I . . . .
[2,] . I . . .
[3,] . . I . .
[4,] . . . I .
[5,] . . . . I
> m1g <- as(m1, "generalMatrix")
> tr1 <- as(m1, "denseMatrix") # dtrMatrix unitriangular
> stopifnotValid(m1g, "dgTMatrix")
> diag(tr1) <- 100
> stopifnot(diag(tr1) == 100)# failed when 'diag<-' did not recycle
> assert.EQ.mat(m2[1:3,], diag(5)[1:3,])
> assert.EQ.mat(m2[,c(4,1)], diag(5)[,c(4,1)])
> stopifnot(identical(m2[1:3,], as(m1[1:3,], "CsparseMatrix")),
+ identical(asUniqueT(m1[, c(4,2)]),
+ asUniqueT(m2[, c(4,2)]))
+ )## failed in 0.9975-11
>
> ## 0-dimensional diagonal - subsetting ----------------------------
> ## before that diagU2N() etc for 0-dim. dtC*:
> m0. <- m00 <- matrix(numeric(),0,0)
> tC0.<- new("dtCMatrix")
> tC0 <- new("dtCMatrix", diag="U")
> (gC0 <- new("dgCMatrix")) # 0 x 0
0 x 0 sparse Matrix of class "dgCMatrix"
<0 x 0 matrix>
> D0 <- Diagonal(0)
> stopifnot(exprs = {
+ identical(m0., as(tC0, "matrix")) # failed: Cholmod error 'invalid xtype' ..
+ identical(numeric(), as(tC0, "numeric"))# "
+ identical(numeric(), tC0[ 0 ])# --> .M.vectorSub(x, i) failed in as(., "matrix")
+ identical(m00[TRUE ], tC0[TRUE ])# (worked already)
+ identical(m00[FALSE], tC0[FALSE])# ditto
+ ##
+ identical(D0, D0[0,0]) # used to fail --> subCsp_ij (..)
+ identical(gC0, D0[, 0]) # (ditto) --> subCsp_cols(..)
+ identical(gC0, D0[0, ]) # " --> subCsp_rows(..)
+ identical(D0, D0[,]) # (worked already)
+ identical(m00[ 0 ], D0[ 0 ] )# ditto
+ identical(m00[TRUE ], D0[TRUE ])# "
+ identical(m00[FALSE], D0[FALSE])# "
+ ##
+ identical(tC0, tC0[0,0]) # failed --> subCsp_ij (..)
+ identical(gC0, tC0[ ,0]) # " --> subCsp_cols(..)
+ identical(gC0, tC0[0, ]) # " --> subCsp_rows(..)
+ identical(tC0, tC0[,]) # (worked already)
+ ## vector indexing
+ })
>
> expr <- quote({ ## FIXME -- both 'TRUE' and 'FALSE' should fail "out of bound",etc
+ D0[TRUE, TRUE ]
+ D0[ , TRUE ]
+ D0[TRUE, ] # worked but should *NOT*
+ tC0[TRUE, TRUE ]
+ tC0[ , TRUE ]
+ tC0[TRUE, ] # worked but should *NOT*
+ ##
+ D0[FALSE,FALSE] # fails --> subCsp_ij(..) -> intI()
+ D0[ ,FALSE] # ditto ............
+ D0[FALSE, ] # ditto
+ tC0[FALSE,FALSE] # "
+ tC0[FALSE, ] # "
+ tC0[ ,FALSE] # "
+ })
> EE <- lapply(expr[-1], function(e)
+ list(expr = e,
+ r = tryCatch(eval(e), error = identity)))
> exR <- lapply(EE, `[[`, "r")
> stopifnot(exprs = {
+ vapply(exR, inherits, logical(1), what = "error")
+ !englishMsgs ||
+ unique( vapply(exR, `[[`, "<msg>", "message")
+ ) == "logical subscript too long"
+ })
>
>
> (uTr <- new("dtTMatrix", Dim = c(3L,3L), diag="U"))
3 x 3 sparse Matrix of class "dtTMatrix" (unitriangular)
[1,] I . .
[2,] . I .
[3,] . . I
> uTr[1,] <- 0
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dtTMatrix; len.(value)=1; missing (i,j) = (0,1)
> assert.EQ.mat(uTr, cbind(0, rbind(0,diag(2))))
>
> M <- m0; M[1,] <- 0
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
> Z <- m0; Z[] <- 0; z <- array(0, dim(M))
> stopifnot(identical(M, Diagonal(x=c(0, rep(1,4)))),
+ all(Z == 0), Qidentical(as(Z, "matrix"), z))
> M <- m0; M[,3] <- 3 ; M ; stopifnot(is(M, "sparseMatrix"), M[,3] == 3)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
5 x 5 sparse Matrix of class "dgCMatrix"
[1,] 1 . 3 . .
[2,] . 1 3 . .
[3,] . . 3 . .
[4,] . . 3 1 .
[5,] . . 3 . 1
> checkMatrix(M)
Compare <Csparse> -- "dgCMatrix" != "dgCMatrix" :
norm(m [5 x 5]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: identical
m >= m for all: ok
m < m for none: Compare <Csparse> -- "dgCMatrix" < "dgCMatrix" :
ok
symmpart(m) + skewpart(m) == m: ok; determinant(): ok
> M <- m0; M[1:3, 3] <- 0 ;M
replCmat[x,i,j,..,val] : nargs()=4;
5 x 5 diagonal matrix of class "ddiMatrix"
[,1] [,2] [,3] [,4] [,5]
[1,] 1 . . . .
[2,] . 1 . . .
[3,] . . 0 . .
[4,] . . . 1 .
[5,] . . . . 1
> T <- m0; T[1:3, 3] <- 10
replCmat[x,i,j,..,val] : nargs()=4;
> stopifnot(identical(M, Diagonal(x=c(1,1, 0, 1,1))),
+ isValid(T, "triangularMatrix"), identical(T[,3], c(10,10,10,0,0)))
>
> M <- m1; M[1,] <- 0 ; M ; assert.EQ.mat(M, diag(c(0,rep(1,4))), tol=0)
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dtTMatrix; len.(value)=1; missing (i,j) = (0,1)
5 x 5 sparse Matrix of class "dtTMatrix"
[1,] . . . . .
[2,] . 1 . . .
[3,] . . 1 . .
[4,] . . . 1 .
[5,] . . . . 1
> M <- m1; M[,3] <- 3 ; stopifnot(is(M,"sparseMatrix"), M[,3] == 3)
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dtTMatrix; len.(value)=1; missing (i,j) = (1,0)
M[i,j] <- v : coercing symmetric M[] into non-symmetric
> Z <- m1; Z[] <- 0
> checkMatrix(M)
Compare <Csparse> -- "dgCMatrix" != "dgCMatrix" :
norm(m [5 x 5]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: ok
m >= m for all: ok
m < m for none: Compare <Csparse> -- "dgCMatrix" < "dgCMatrix" :
ok
symmpart(m) + skewpart(m) == m: ok; determinant(): ok
> M <- m1; M[1:3, 3] <- 0 ;M
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dtTMatrix; len.(value)=1;
5 x 5 sparse Matrix of class "dtTMatrix"
[1,] 1 . . . .
[2,] . 1 . . .
[3,] . . . . .
[4,] . . . 1 .
[5,] . . . . 1
> assert.EQ.mat(M, diag(c(1,1, 0, 1,1)), tol=0)
> T <- m1; T[1:3, 3] <- 10; checkMatrix(T)
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dtTMatrix; len.(value)=1;
Compare <Csparse> -- "dtCMatrix" != "dtCMatrix" :
norm(m [5 x 5]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: identical
m >= m for all: ok
m < m for none: Compare <Csparse> -- "dtCMatrix" < "dtCMatrix" :
ok
symmpart(m) + skewpart(m) == m: ok; determinant(): ok
.TM.repl.i.mat(): drop 'matrix' case ...
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
as(mm., "triangularMatrix"): valid: TRUE
> stopifnot(is(T, "triangularMatrix"), identical(T[,3], c(10,10,10,0,0)),
+ Qidentical(as(Z, "matrix"), z))
>
> M <- m2; M[1,] <- 0 ; M ; assert.EQ.mat(M, diag(c(0,rep(1,4))), tol=0)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (0,1)
5 x 5 sparse Matrix of class "dtCMatrix"
[1,] . . . . .
[2,] . 1 . . .
[3,] . . 1 . .
[4,] . . . 1 .
[5,] . . . . 1
> M <- m2; M[,3] <- 3 ; stopifnot(is(M,"sparseMatrix"), M[,3] == 3)
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
> checkMatrix(M)
Compare <Csparse> -- "dgCMatrix" != "dgCMatrix" :
norm(m [5 x 5]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: identical
m >= m for all: ok
m < m for none: Compare <Csparse> -- "dgCMatrix" < "dgCMatrix" :
ok
symmpart(m) + skewpart(m) == m: ok; determinant(): ok
> Z <- m2; Z[] <- 0
> M <- m2; M[1:3, 3] <- 0 ;M
replCmat[x,i,j,..,val] : nargs()=4;
5 x 5 sparse Matrix of class "dtCMatrix"
[1,] 1 . . . .
[2,] . 1 . . .
[3,] . . . . .
[4,] . . . 1 .
[5,] . . . . 1
> assert.EQ.mat(M, diag(c(1,1, 0, 1,1)), tol=0)
> T <- m2; T[1:3, 3] <- 10; checkMatrix(T)
replCmat[x,i,j,..,val] : nargs()=4;
Compare <Csparse> -- "dtCMatrix" != "dtCMatrix" :
norm(m [5 x 5]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: identical
m >= m for all: ok
m < m for none: Compare <Csparse> -- "dtCMatrix" < "dtCMatrix" :
ok
symmpart(m) + skewpart(m) == m: ok; determinant(): ok
.TM.repl.i.mat(): drop 'matrix' case ...
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
as(mm., "triangularMatrix"): valid: TRUE
> stopifnot(is(T, "dtCMatrix"), identical(T[,3], c(10,10,10,0,0)),
+ Qidentical(as(Z, "matrix"), z))
> showProc.time()
Time (user system elapsed): 0.178 0.003 0.18
>
>
> ## "Vector indices" -------------------
> asLogical <- function(x) {
+ stopifnot(is.atomic(x))
+ storage.mode(x) <- "logical"
+ x
+ }
> .iniDiag.example <- expression({
+ D <- Diagonal(6)
+ M <- as(D,"generalMatrix") # was "dge", now "dgC"
+ d <- as(D,"unpackedMatrix") # "dtr" (unitri)
+ m <- as(D,"matrix")
+ s <- as(D,"TsparseMatrix"); N <- as(s,"nMatrix")
+ S <- as(s,"CsparseMatrix"); C <- as(S,"nMatrix")
+ })
> eval(.iniDiag.example)
> i <- c(3,1,6); v <- c(10,15,20)
> ## (logical,value) which both are recycled:
> L <- c(TRUE, rep(FALSE,8)) ; z <- c(50,99)
>
> ## vector subassignment, both with integer & logical
> ## these now work correctly {though not very efficiently; hence warnings}
> m[i] <- v # the role model: only first column is affected
> M[i] <- v; assert.EQ.mat(M,m) # dgC
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> D[i] <- v; assert.EQ.mat(D,m) # ddi -> dtC (new! 2019-07; was dgT)
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> s[i] <- v; assert.EQ.mat(s,m) # dtT -> dgT
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
> S[i] <- v; assert.EQ.mat(S,m); S # dtC -> dtT -> dgT -> dgC
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
6 x 6 sparse Matrix of class "dgCMatrix"
[1,] 15 . . . . .
[2,] . 1 . . . .
[3,] 10 . 1 . . .
[4,] . . . 1 . .
[5,] . . . . 1 .
[6,] 20 . . . . 1
> m.L <- asLogical(m) ; assertWarning(
+ C[i] <- v, verbose=TRUE) # warning: C is nMatrix, v not T/F
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class ntTMatrix to ngTMatrix
Asserted warning: x[.] <- val: x is "ngTMatrix", val not in {TRUE, FALSE} is coerced.
> assert.EQ.mat(C,m.L); validObject(C); assertWarning(
[1] TRUE
+ N[i] <- v, verbose=TRUE)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class ntTMatrix to ngTMatrix
Asserted warning: x[.] <- val: x is "ngTMatrix", val not in {TRUE, FALSE} is coerced.
> assert.EQ.mat(N,m.L); validObject(N)
[1] TRUE
> stopifnot(identical(D, as(as(s, "triangularMatrix"), "CsparseMatrix")))
> ## logical *vector* indexing
> eval(.iniDiag.example)
> m[L] <- z; m.L <- asLogical(m)
> M[L] <- z; assert.EQ.mat(M,m)
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> D[L] <- z; assert.EQ.mat(D,m)
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> s[L] <- z; assert.EQ.mat(s,m)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
> S[L] <- z; assert.EQ.mat(S,m) ; S ; assertWarning(
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
6 x 6 sparse Matrix of class "dgCMatrix"
[1,] 50 . . 50 . .
[2,] . 1 . . . .
[3,] . . 1 . . .
[4,] . 99 . 1 99 .
[5,] . . . . 1 .
[6,] . . . . . 1
+ C[L] <- z, verbose=TRUE); assert.EQ.mat(C,m.L) ; assertWarning(
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class ntTMatrix to ngTMatrix
Asserted warning: x[.] <- val: x is "ngTMatrix", val not in {TRUE, FALSE} is coerced.
+ N[L] <- z, verbose=TRUE); assert.EQ.mat(N,m.L)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class ntTMatrix to ngTMatrix
Asserted warning: x[.] <- val: x is "ngTMatrix", val not in {TRUE, FALSE} is coerced.
>
>
> ## indexing [i] vs [i,] --- now ok
> eval(.iniDiag.example)
> stopifnot(identical5(m[i], M[i], D[i], s[i], S[i]), identical3(as.logical(m[i]), C[i], N[i]),
+ identical5(m[L], M[L], D[L], s[L], S[L]), identical3(as.logical(m[L]), C[L], N[L]))
> ## bordercase ' drop = .' *vector* indexing {failed till 2009-04-..)
> stopifnot(identical5(m[i,drop=FALSE], M[i,drop=FALSE], D[i,drop=FALSE],
+ s[i,drop=FALSE], S[i,drop=FALSE]),
+ identical3(as.logical(m[i,drop=FALSE]),
+ C[i,drop=FALSE], N[i,drop=FALSE]))
> stopifnot(identical5(m[L,drop=FALSE], M[L,drop=FALSE], D[L,drop=FALSE],
+ s[L,drop=FALSE], S[L,drop=FALSE]),
+ identical3(as.logical(m[L,drop=FALSE]),
+ C[L,drop=FALSE], N[L,drop=FALSE]))
> ## using L for row-indexing should give an error
> assertError(m[L,]); assertError(m[L,, drop=FALSE])
> ## these did not signal an error, upto (including) 0.999375-30:
> assertError(s[L,]); assertError(s[L,, drop=FALSE])
> assertError(S[L,]); assertError(S[L,, drop=FALSE])
> assertError(N[L,]); assertError(N[L,, drop=FALSE])
>
> ## row indexing:
> assert.EQ.mat(D[i,], m[i,])
> assert.EQ.mat(M[i,], m[i,])
> assert.EQ.mat(s[i,], m[i,])
> assert.EQ.mat(S[i,], m[i,])
> assert.EQ.mat(C[i,], asLogical(m[i,]))
> assert.EQ.mat(N[i,], asLogical(m[i,]))
> ## column indexing:
> assert.EQ.mat(D[,i], m[,i])
> assert.EQ.mat(M[,i], m[,i])
> assert.EQ.mat(s[,i], m[,i])
> assert.EQ.mat(S[,i], m[,i])
> assert.EQ.mat(C[,i], asLogical(m[,i]))
> assert.EQ.mat(N[,i], asLogical(m[,i]))
>
>
> ### --- negative indices ----------
>
> ## 1) negative *vector* indexing
> eval(.iniDiag.example)
> i <- -(2:30)
> stopifnot(identical5(m[i], M[i], D[i], s[i], S[i]),
+ identical3(as.logical(m[i]), C[i], N[i]))
> ## negative vector subassignment :
> v <- seq_along(m[i])
> m[i] <- v; m.L <- asLogical(m)
> M[i] <- v; assert.EQ.mat(M,m) # dge
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> D[i] <- v; assert.EQ.mat(D,m) # ddi -> dtT -> dgT
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> s[i] <- v; assert.EQ.mat(s,m) # dtT -> dgT
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
> S[i] <- v; assert.EQ.mat(S,m); S ; assertWarning( # dtC -> dtT -> dgT -> dgC
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
6 x 6 sparse Matrix of class "dgCMatrix"
[1,] 1 . . . . 2
[2,] . 1 . . . 3
[3,] . . 1 . . 4
[4,] . . . 1 . 5
[5,] . . . . 1 6
[6,] . . . . . 7
+ N[i] <- v, verbose=TRUE)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class ntTMatrix to ngTMatrix
Asserted warning: x[.] <- val: x is "ngTMatrix", val not in {TRUE, FALSE} is coerced.
> assert.EQ.mat(N,m.L); N ; assertWarning(
6 x 6 sparse Matrix of class "ngTMatrix"
[1,] | . . . . |
[2,] . | . . . |
[3,] . . | . . |
[4,] . . . | . |
[5,] . . . . | |
[6,] . . . . . |
+ C[i] <- v, verbose=TRUE)
replCmat[x,i,j,..,val] : nargs()=3; missing (i,j) = (0,1)
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class ntTMatrix to ngTMatrix
Asserted warning: x[.] <- val: x is "ngTMatrix", val not in {TRUE, FALSE} is coerced.
> assert.EQ.mat(C,m.L); C #
6 x 6 sparse Matrix of class "ngCMatrix"
[1,] | . . . . |
[2,] . | . . . |
[3,] . . | . . |
[4,] . . . | . |
[5,] . . . . | |
[6,] . . . . . |
>
> options(warn = 2) #----------------------# NO WARNINGS from here -----------------
> ## =====================
>
> ## 2) negative [i,j] indices
> mc <- mC[1:5, 1:7]
> mt <- mT[1:5, 1:7]
> ## sub matrix
> assert.EQ.mat(mC[1:2, 0:3], mm[1:2, 0:3]) # test 0-index
> stopifnot(identical(mc[-(3:5), 0:2], mC[1:2, 0:2]),
+ identical(mt[-(3:5), 0:2], mT[1:2, 0:2]),
+ identical(mC[2:3, 4], mm[2:3, 4]))
> assert.EQ.mat(mC[1:2,], mm[1:2,])
> ## sub vector
> stopifnot(identical4(mc[-(1:4), ], mC[5, 1:7],
+ mt[-(1:4), ], mT[5, 1:7]))
> stopifnot(identical4(mc[-(1:4), -(2:4)], mC[5, c(1,5:7)],
+ mt[-(1:4), -(2:4)], mT[5, c(1,5:7)]))
>
> ## mixing of negative and positive must give error
> assertError(mT[-1:1,])
> showProc.time()
Time (user system elapsed): 0.039 0.001 0.041
>
> ## Sub *Assignment* ---- now works (partially):
> mt0 <- mt
> nt <- as(mt, "nMatrix")
> mt[1, 4] <- -99
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1;
> mt[2:3, 1:6] <- 0
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1;
> mt
5 x 7 sparse Matrix of class "dgTMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 . . . -99 . . 241
r2 . . . . . . .
r3 . . . . . . 243
r4 . . . . . . .
r5 . 45 . . . . .
> m2 <- mt+mt
> m2[1,4] <- -200
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1;
> m2[c(1,3), c(5:6,2)] <- 1:6
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=6;
> stopifnot(m2[1,4] == -200,
+ as.vector(m2[c(1,3), c(5:6,2)]) == 1:6)
> mt[,3] <- 30
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1; missing (i,j) = (1,0)
> mt[2:3,] <- 250
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1; missing (i,j) = (0,1)
> mt[1:5 %% 2 == 1, 3] <- 0
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1;
> mt[3:1, 1:7 > 5] <- 0
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1;
> mt
5 x 7 sparse Matrix of class "dgTMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 . . . -99 . . .
r2 250 250 250 250 250 . .
r3 250 250 . 250 250 . .
r4 . . 30 . . . .
r5 . 45 . . . . .
>
> tt <- as(mt,"matrix")
> ii <- c(0,2,5)
> jj <- c(2:3,5)
> tt[ii, jj] <- 1:6 # 0 is just "dropped"
> mt[ii, jj] <- 1:6
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=6;
> assert.EQ.mat(mt, tt)
>
> mt[1:5, 2:6]
5 x 5 sparse Matrix of class "dgTMatrix"
c2 c3 c4 c5 c6
r1 . . -99 . .
r2 1 3 250 5 .
r3 250 . 250 250 .
r4 . 30 . . .
r5 2 4 . 6 .
> as((mt0 - mt)[1:5,], "dsparseMatrix")# [1,5] and lines 2:3
5 x 7 sparse Matrix of class "dgCMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 . . . 220 . . 241
r2 -250 41 -3 -250 -5 202 .
r3 -247 -250 . -250 -250 . 243
r4 . . -30 . . . .
r5 . 43 -4 . -6 . .
>
> mt[c(2,4), ] <- 0; stopifnot(as(mt[c(2,4), ],"matrix") == 0)
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1; missing (i,j) = (0,1)
> mt[2:3, 4:7] <- 33
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=1;
> checkMatrix(mt)
Compare <Csparse> -- "dgCMatrix" != "dgCMatrix" :
norm(m [5 x 7]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: ok
m >= m for all: ok
m < m for none: Compare <Csparse> -- "dgCMatrix" < "dgCMatrix" :
ok
> mt
5 x 7 sparse Matrix of class "dgTMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 . . . -99 . . .
r2 . . . 33 33 33 33
r3 250 250 . 33 33 33 33
r4 . . . . . . .
r5 . 2 4 . 6 . .
>
> mc[1,4] <- -99 ; stopifnot(mc[1,4] == -99)
replCmat[x,i,j,..,val] : nargs()=4;
> mc[1,4] <- 00 ; stopifnot(mc[1,4] == 00)
replCmat[x,i,j,..,val] : nargs()=4;
> mc[1,4] <- -99 ; stopifnot(mc[1,4] == -99)
replCmat[x,i,j,..,val] : nargs()=4;
> mc[1:2,4:3] <- 4:1; stopifnot(as(mc[1:2,4:3], "matrix") == 4:1)
replCmat[x,i,j,..,val] : nargs()=4;
>
> mc[-1, 3] <- -2:1 # 0 should not be entered; 'value' recycled
replCmat[x,i,j,..,val] : nargs()=4;
> mt[-1, 3] <- -2:1
.. replTmat(x,i,j,v): nargs()= 4; cl.(x)=dgTMatrix; len.(value)=4;
> stopifnot(mc@x != 0, mt@x != 0,
+ mc[-1,3] == -2:1, mt[-1,3] == -2:1) ## failed earlier
>
> mc0 <- mc
> mt0 <- as(mc0, "TsparseMatrix")
> m0 <- as(mc0, "matrix")
> set.seed(1); options(Matrix.verbose = FALSE)
> for(i in 1:(if(doExtras) 50 else 4)) {
+ mc <- mc0; mt <- mt0 ; m <- m0
+ ev <- 1:5 %% 2 == round(runif(1))# 0 or 1
+ j <- sample(ncol(mc), 1 + round(runif(1)))
+ nv <- rpois(sum(ev) * length(j), lambda = 1)
+ mc[ev, j] <- nv
+ m[ev, j] <- nv
+ mt[ev, j] <- nv
+ if(i %% 10 == 1) print(mc[ev,j, drop = FALSE])
+ stopifnot(as.vector(mc[ev, j]) == nv, ## failed earlier...
+ as.vector(mt[ev, j]) == nv)
+ validObject(mc) ; assert.EQ.mat(mc, m)
+ validObject(mt) ; assert.EQ.mat(mt, m)
+ }
2 x 1 sparse Matrix of class "dgCMatrix"
c5
r2 2
r4 .
> showProc.time()
Time (user system elapsed): 0.07 0.003 0.073
> options(Matrix.verbose = TRUE)
>
> mc # no longer has non-structural zeros
5 x 7 sparse Matrix of class "dgCMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 . . 2 4 . . 241
r2 . 42 . 3 . 202 .
r3 3 . -1 . . . 243
r4 . . 1 . . . .
r5 . 45 1 . . . .
> mc[ii, jj] <- 1:6
> mc[c(2,5), c(3,5)] <- 3.2
> checkMatrix(mc)
norm(m [5 x 7]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: identical
m >= m for all: ok
m < m for none: ok
> m. <- mc
> mc[4,] <- 0
> mc
5 x 7 sparse Matrix of class "dgCMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 . . 2.0 4 . . 241
r2 . 1 3.2 3 3.2 202 .
r3 3 . -1.0 . . . 243
r4 . . . . . . .
r5 . 2 3.2 . 3.2 . .
>
> S <- as(Diagonal(5),"TsparseMatrix")
> H <- Hilbert(9)
> Hc <- as(round(H, 3), "CsparseMatrix")# a sparse matrix with no 0 ...
> (trH <- tril(Hc[1:5, 1:5]))
5 x 5 sparse Matrix of class "dtCMatrix"
[1,] 1.000 . . . .
[2,] 0.500 0.333 . . .
[3,] 0.333 0.250 0.200 . .
[4,] 0.250 0.200 0.167 0.143 .
[5,] 0.200 0.167 0.143 0.125 0.111
> stopifnot(is(trH, "triangularMatrix"), trH@uplo == "L",
+ is(S, "triangularMatrix"))
>
> ## triangular assignment
> ## the slick (but inefficient in case of sparse!) way to assign sub-diagonals:
> ## equivalent to tmp <- `diag<-`(S[,-1], -2:1); S[,-1] <- tmp
> ## which dispatches to (x="TsparseMatrix", i="missing",j="index", value="replValue")
> diag(S[,-1]) <- -2:1 # used to give a wrong warning
M[i,j] <- v : coercing symmetric M[] into non-symmetric
> S <- as(S,"triangularMatrix")
> assert.EQ.mat(S, local({s <- diag(5); diag(s[,-1]) <- -2:1; s}))
>
> trH[c(1:2,4), c(2:3,5)] <- 0 # gave an *error* upto Jan.2008
> trH[ lower.tri(trH) ] <- 0 # ditto, because of callNextMethod()
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
'sub-optimal sparse 'x[i] <- v' assignment: Coercing class dtTMatrix to dgTMatrix
>
> m <- Matrix(0+1:28, nrow = 4)
> m[-3,c(2,4:5,7)] <- m[ 3, 1:4] <- m[1:3, 6] <- 0
> mT <- as(m, "TsparseMatrix")
> stopifnot(identical(mT[lower.tri(mT)],
+ m [lower.tri(m) ]))
> lM <- upper.tri(mT, diag=TRUE)
> mT[lM] <- 0
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> m[lM] <- 0
> assert.EQ.mat(mT, as(m,"matrix"))
> mT[lM] <- -1:0
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> m[lM] <- -1:0
> assert.EQ.mat(mT, as(m,"matrix"))
> (mT <- drop0(mT))
4 x 7 sparse Matrix of class "dgCMatrix"
[1,] -1 . . -1 -1 -1 -1
[2,] 2 -1 -1 . . . .
[3,] . . . -1 -1 -1 -1
[4,] 4 . 12 . . . .
>
> i <- c(1:2, 4, 6:7); j <- c(2:4,6)
> H[i,j] <- 0
> (H. <- round(as(H, "sparseMatrix"), 3)[ , 2:7])
9 x 6 sparse Matrix of class "dgCMatrix"
[1,] . . . 0.200 . 0.143
[2,] . . . 0.167 . 0.125
[3,] 0.250 0.200 0.167 0.143 0.125 0.111
[4,] . . . 0.125 . 0.100
[5,] 0.167 0.143 0.125 0.111 0.100 0.091
[6,] . . . 0.100 . 0.083
[7,] . . . 0.091 . 0.077
[8,] 0.111 0.100 0.091 0.083 0.077 0.071
[9,] 0.100 0.091 0.083 0.077 0.071 0.067
> Hc. <- Hc
> Hc.[i,j] <- 0 ## now "works", but setting "non-structural" 0s
> stopifnot(as(Hc.[i,j], "matrix") == 0)
> Hc.[, 1:6]
9 x 6 sparse Matrix of class "dgCMatrix"
[1,] 1.000 . . . 0.200 .
[2,] 0.500 . . . 0.167 .
[3,] 0.333 0.250 0.200 0.167 0.143 0.125
[4,] 0.250 . . . 0.125 .
[5,] 0.200 0.167 0.143 0.125 0.111 0.100
[6,] 0.167 . . . 0.100 .
[7,] 0.143 . . . 0.091 .
[8,] 0.125 0.111 0.100 0.091 0.083 0.077
[9,] 0.111 0.100 0.091 0.083 0.077 0.071
>
> ## an example that failed for a long time
> sy3 <- new("dsyMatrix", Dim = as.integer(c(2, 2)), x = c(14, -1, 2, -7))
> checkMatrix(dm <- kronecker(Diagonal(2), sy3))# now sparse with new kronecker
norm(m [4 x 4]) : 1 I F suboptimal 'Arith' implementation of 'dsC* o dsC*'
M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
identical
m >= m for all: ok
m < m for none: ok
symmpart(m) + skewpart(m) == m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
ok; determinant(): ok
> dm <- Matrix(as(dm, "matrix"))# -> "dsyMatrix"
> (s2 <- as(dm, "sparseMatrix"))
4 x 4 sparse Matrix of class "dsCMatrix"
[1,] 14 2 . .
[2,] 2 -7 . .
[3,] . . 14 2
[4,] . . 2 -7
> checkMatrix(st <- as(s2, "TsparseMatrix"))
norm(m [4 x 4]) : 1 I F suboptimal 'Arith' implementation of 'dsC* o dsC*'
M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
identical
m >= m for all: ok
m < m for none: ok
symmpart(m) + skewpart(m) == m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
ok; determinant(): ok
> stopifnot(is(s2, "symmetricMatrix"),
+ is(st, "symmetricMatrix"))
> checkMatrix(s.32 <- st[1:3,1:2]) ## 3 x 2 - and *not* dsTMatrix
norm(m [3 x 2]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: ok
m >= m for all: ok
m < m for none: ok
> checkMatrix(s2.32 <- s2[1:3,1:2])
norm(m [3 x 2]) : 1 I F M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: identical
m >= m for all: ok
m < m for none: ok
> I <- c(1,4:3)
> stopifnot(is(s2.32, "generalMatrix"),
+ is(s.32, "generalMatrix"),
+ identical(as.mat(s.32), as.mat(s2.32)),
+ identical3(dm[1:3,-1], asD(s2[1:3,-1]), asD(st[1:3,-1])),
+ identical4(2, dm[4,3], s2[4,3], st[4,3]),
+ identical3(diag(dm), diag(s2), diag(st)),
+ is((cI <- s2[I,I]), "dsCMatrix"),
+ is((tI <- st[I,I]), "dsTMatrix"),
+ identical4(as.mat(dm)[I,I], as.mat(dm[I,I]), as.mat(tI), as.mat(cI))
+ )
>
> ## now sub-assign and check for consistency
> ## symmetric subassign should keep symmetry
> st[I,I] <- 0; checkMatrix(st); stopifnot(is(st,"symmetricMatrix"))
norm(m [4 x 4]) : 1 I F suboptimal 'Arith' implementation of 'dsC* o dsC*'
M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
identical
m >= m for all: ok
m < m for none: ok
symmpart(m) + skewpart(m) == m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
ok; determinant(): ok
> s2[I,I] <- 0; checkMatrix(s2); stopifnot(is(s2,"symmetricMatrix"))
norm(m [4 x 4]) : 1 I F suboptimal 'Arith' implementation of 'dsC* o dsC*'
M ok
Summary: ok
as(., "nMatrix") giving full nonzero-pattern: ok
2*m =?= m+m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
identical
m >= m for all: ok
m < m for none: ok
symmpart(m) + skewpart(m) == m: suboptimal 'Arith' implementation of 'dsC* o dsC*'
ok; determinant(): ok
> ##
> m <- as.mat(st)
> m[2:1,2:1] <- 4:1
> st[2:1,2:1] <- 4:1
M[i,j] <- v : coercing symmetric M[] into non-symmetric
> s2[2:1,2:1] <- 4:1
> stopifnot(identical(m, as.mat(st)),
+ 1:4 == as.vector(s2[1:2,1:2]),
+ identical(m, as.mat(s2)))
>
> ## now a slightly different situation for 's2' (had bug)
> s2 <- as(dm, "sparseMatrix")
> s2[I,I] <- 0; diag(s2)[2:3] <- -(1:2)
> stopifnot(is(s2,"symmetricMatrix"), diag(s2) == c(0:-2,0))
> t2 <- as(s2, "TsparseMatrix")
> m <- as.mat(s2)
> s2[2:1,2:1] <- 4:1
> t2[2:1,2:1] <- 4:1
M[i,j] <- v : coercing symmetric M[] into non-symmetric
> m[2:1,2:1] <- 4:1
> assert.EQ.mat(t2, m)
> assert.EQ.mat(s2, m)
> ## and the same (for a different s2 !)
> s2[2:1,2:1] <- 4:1
> t2[2:1,2:1] <- 4:1
> assert.EQ.mat(t2, m)# ok
> assert.EQ.mat(s2, m)# failed in 0.9975-8
> showProc.time()
Time (user system elapsed): 0.161 0.003 0.163
>
> ## sub-assign RsparseMatrix -- Matrix bug [#6709] by David Cortes
> ## https://r-forge.r-project.org/tracker/?func=detail&atid=294&aid=6709&group_id=61
> ## simplified by MM
> X <- new("dgCMatrix", i = c(0L,3L), p = c(0L,2L,2L,2L), x = c(100, -20), Dim = c(12L,3L))
> R <- as(X, "RsparseMatrix")
> T <- as(R, "TsparseMatrix")
> T[, 2] <- 22 # works fine
> R[, 2] <- 22 # failed, as it called replTmat() giving narg() == 3
> ## now R is Tsparse (as documented on ../man/RsparseMatrix-class.Rd),
> identical(R, T) ## but as this may change, rather R & T should have the same *content*
[1] TRUE
> assert.EQ.Mat(R, T)
>
>
> ## m[cbind(i,j)] <- value: (2-column matrix subassignment): -------------------------
> m.[ cbind(3:5, 1:3) ] <- 1:3
> stopifnot(m.[3,1] == 1, m.[4,2] == 2)
> nt. <- nt ; nt[rbind(2:3, 3:4, c(3,3))] <- FALSE
> s. <- m. ; m.[cbind(3,4:6)] <- 0 ## assigning 0 where there *is* 0 ..
> stopifnot(identical(nt.,nt), ## should not have changed
+ identical(s., m.))
> x.x[ cbind(2:6, 2:6)] <- 12:16
> stopifnot(isValid(x.x, "dsCMatrix"),
+ 12:16 == as.mat(x.x)[cbind(2:6, 2:6)])
> (ne1 <- (mc - m.) != 0)
5 x 7 sparse Matrix of class "lgCMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 . . : : . . :
r2 . : : : : : .
r3 | . : . . . :
r4 . | | . . . .
r5 . : | . : . .
> stopifnot(identical(ne1, 0 != abs(mc - m.)))
> (ge <- m. >= mc) # contains "=" -> result is dense
5 x 7 Matrix of class "lgeMatrix"
c1 c2 c3 c4 c5 c6 c7
r1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
r2 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
r3 FALSE TRUE TRUE TRUE TRUE TRUE TRUE
r4 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
r5 TRUE TRUE FALSE TRUE TRUE TRUE TRUE
> ne. <- mc != m. # was wrong (+ warning)
> stopifnot(identical(!(m. < mc), m. >= mc),
+ identical(m. < mc, as(!ge, "sparseMatrix")),
+ identical(ne., drop0(ne1)))
>
> d6 <- Diagonal(6)
> ii <- c(1:2, 4:5)
> d6[cbind(ii,ii)] <- 7*ii
> stopifnot(is(d6, "ddiMatrix"), identical(d6, Diagonal(x=c(7*1:2,1,7*4:5,1))))
>
> sclass <- function(obj) as.vector(class(obj)) # as.v*(): drop attr(*,"package")
> show2cls <- function(C,D, chr = "")
+ cat(sprintf("%s & %s%s: %s %s\n",
+ deparse(substitute(C)), deparse(substitute(D)), chr,
+ sclass(C), sclass(D)))
> for(j in 2:6) { ## even and odd j used to behave differently
+ cat("j = ", j, ":\n-------\n")
+ M <- Matrix(0, j,j); m <- matrix(0, j,j)
+ T <- as(M, "TsparseMatrix")
+ TG <- as(T, "generalMatrix")
+ G <- as(M, "generalMatrix"); show2cls(TG, G)
+ stopifnot(is(TG, "TsparseMatrix"),
+ is(G, "CsparseMatrix"))
+ id <- cbind(1:j,1:j)
+ i2 <- cbind(1:j,j:1)
+ m[id] <- 1:j
+ M[id] <- 1:j
+ T[id] <- 1:j ; show2cls(M, T,' ("diag")')
+ stopifnot(is(M, "diagonalMatrix"), # since 2019-07 // FIXME (?!) for j=1
+ is(T,"triangularMatrix"), isDiagonal(T)) # was "symmetricMatrix"
+ G[id] <- 1:j
+ TG[id]<- 1:j
+ m[i2] <- 10
+ M[i2] <- 10
+ T[i2] <- 10 ; show2cls(M, T,' ("symm")')
+ G[i2] <- 10
+ TG[i2]<- 10
+ ##
+ assert.EQ.mat(M, m)
+ assert.EQ.mat(T, m)
+ assert.EQ.mat(G, m)
+ assert.EQ.mat(TG,m)
+ }
j = 2 :
-------
TG & G: dgTMatrix dgCMatrix
M & T ("diag"): ddiMatrix dtTMatrix
M[ij] <- v : coercing symmetric M[] into non-symmetric
M[ij] <- v : coercing symmetric M[] into non-symmetric
M & T ("symm"): dgCMatrix dgTMatrix
j = 3 :
-------
TG & G: dgTMatrix dgCMatrix
M & T ("diag"): ddiMatrix dtTMatrix
M[ij] <- v : coercing symmetric M[] into non-symmetric
M[ij] <- v : coercing symmetric M[] into non-symmetric
M & T ("symm"): dgCMatrix dgTMatrix
j = 4 :
-------
TG & G: dgTMatrix dgCMatrix
M & T ("diag"): ddiMatrix dtTMatrix
M[ij] <- v : coercing symmetric M[] into non-symmetric
M[ij] <- v : coercing symmetric M[] into non-symmetric
M & T ("symm"): dgCMatrix dgTMatrix
j = 5 :
-------
TG & G: dgTMatrix dgCMatrix
M & T ("diag"): ddiMatrix dtTMatrix
M[ij] <- v : coercing symmetric M[] into non-symmetric
M[ij] <- v : coercing symmetric M[] into non-symmetric
M & T ("symm"): dgCMatrix dgTMatrix
j = 6 :
-------
TG & G: dgTMatrix dgCMatrix
M & T ("diag"): ddiMatrix dtTMatrix
M[ij] <- v : coercing symmetric M[] into non-symmetric
M[ij] <- v : coercing symmetric M[] into non-symmetric
M & T ("symm"): dgCMatrix dgTMatrix
>
>
> ## drop, triangular, ...
> (M3 <- Matrix(upper.tri(matrix(, 3, 3)))) # ltC; indexing used to fail
3 x 3 sparse Matrix of class "ltCMatrix"
[1,] . | |
[2,] . . |
[3,] . . .
> T3 <- as(M3, "TsparseMatrix")
> stopifnot(identical(drop(M3), M3),
+ identical4(drop(M3[,2, drop = FALSE]), M3[,2, drop = TRUE],
+ drop(T3[,2, drop = FALSE]), T3[,2, drop = TRUE]),
+ is(T3, "triangularMatrix"),
+ !is(T3[,2, drop=FALSE], "triangularMatrix")
+ )
>
> (T6 <- as(as(as(kronecker(Matrix(c(0,0,1,0),2,2), t(T3)),
+ "lMatrix"), "triangularMatrix"), "TsparseMatrix"))
6 x 6 sparse Matrix of class "ltTMatrix"
[1,] . . . . . .
[2,] . . . | . .
[3,] . . . | | .
[4,] . . . . . .
[5,] . . . . . .
[6,] . . . . . .
> T6[1:4, -(1:3)] # failed (trying to coerce back to ltTMatrix)
4 x 3 sparse Matrix of class "lgTMatrix"
[1,] . . .
[2,] | . .
[3,] | | .
[4,] . . .
> stopifnot(identical(T6[1:4, -(1:3)][2:3, -3],
+ spMatrix(2,2, i=c(1,2,2), j=c(1,1,2), x=rep(TRUE,3))))
>
> M <- Diagonal(4); M[1,2] <- 2
> M. <- as(M, "CsparseMatrix")
> (R <- as(M., "RsparseMatrix"))
4 x 4 sparse Matrix of class "dtRMatrix"
[1,] 1 2 . .
[2,] . 1 . .
[3,] . . 1 .
[4,] . . . 1
> (Ms <- symmpart(M.))
4 x 4 sparse Matrix of class "dsCMatrix"
[1,] 1 1 . .
[2,] 1 1 . .
[3,] . . 1 .
[4,] . . . 1
> Rs <- as(Ms, "RsparseMatrix")
> stopifnot(isValid(M, "triangularMatrix"),
+ isValid(M.,"triangularMatrix"),
+ isValid(Ms, "dsCMatrix"),
+ isValid(R, "dtRMatrix"),
+ isValid(Rs, "dsRMatrix") )
> stopifnot(dim(M[2:3, FALSE]) == c(2,0),
+ dim(R[2:3, FALSE]) == c(2,0),
+ identical(M [2:3,TRUE], M [2:3,]),
+ identical(M.[2:3,TRUE], M.[2:3,]),
+ identical(R [2:3,TRUE], R [2:3,]),
+ dim(R[FALSE, FALSE]) == c(0,0))
>
> n <- 50000L
> Lrg <- new("dgTMatrix", Dim = c(n,n))
> diag(Lrg) <- 1:n
> dLrg <- as(Lrg, "diagonalMatrix")
> stopifnot(identical(Diagonal(x = 1:n), dLrg))
> diag(dLrg) <- 1 + diag(dLrg)
> Clrg <- as(Lrg,"CsparseMatrix")
> Ctrg <- as(Clrg, "triangularMatrix")
> diag(Ctrg) <- 1 + diag(Ctrg)
> stopifnot(identical(Diagonal(x = 1+ 1:n), dLrg),
+ identical(Ctrg, as(dLrg,"CsparseMatrix")))
>
> cc <- capture.output(show(dLrg))# show(<diag>) used to error for large n
> showProc.time()
Time (user system elapsed): 0.125 0.007 0.133
>
> ## FIXME: "dspMatrix" (symmetric *packed*) not going via "matrix"
>
>
> ## Large Matrix indexing / subassignment
> ## ------------------------------------- (from ex. by Imran Rashid)
> n <- 7000000
> m <- 100000
> nnz <- 20000
> op <- options(Matrix.verbose = 2, warn = 1)
>
> set.seed(12)
> f <- sparseMatrix(i = sample(n, size=nnz, replace=TRUE),
+ j = sample(m, size=nnz, replace=TRUE))
> str(f)
Formal class 'ngCMatrix' [package "Matrix"] with 5 slots
..@ i : int [1:20000] 6692226 4657233 4490801 3688935 344371 6380246 2797160 3584813 6553304 2327896 ...
..@ p : int [1:99993] 0 1 1 1 1 1 1 1 1 1 ...
..@ Dim : int [1:2] 6999863 99992
..@ Dimnames:List of 2
.. ..$ : NULL
.. ..$ : NULL
..@ factors : list()
> dim(f) # 6999863 x 99992
[1] 6999863 99992
> prod(dim(f)) # 699930301096 == 699'930'301'096 (~ 700'000 millions)
[1] 699930301096
> str(thisCol <- f[,5000])# logi [~ 7 mio....]
logi [1:6999863] FALSE FALSE FALSE FALSE FALSE FALSE ...
> sv <- as(thisCol, "sparseVector")
> str(sv) ## "empty" !
Formal class 'lsparseVector' [package "Matrix"] with 3 slots
..@ x : logi(0)
..@ length: int 6999863
..@ i : int(0)
> validObject(spCol <- f[,5000, drop=FALSE]) # "empty" [n x 1] ngCmatrix
[1] TRUE
> ##
> ## *not* identical(): as(spCol, "sparseVector")@length is "double"prec:
> stopifnot(all.equal(as(spCol, "sparseVector"),
+ as(sv, "nsparseVector"), tolerance=0))
> if(interactive())
+ selectMethod("[<-", c("ngCMatrix", "missing","numeric", "logical"))
> # -> replCmat() in ../R/Csparse.R
> f[,5762] <- thisCol # now "fine" and fast thanks to replCmat() --> replCmat4()
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
>
> fx <- sparseMatrix(i = sample(n, size=nnz, replace=TRUE),
+ j = sample(m, size=nnz, replace=TRUE),
+ x = round(10*rnorm(nnz)))
> class(fx)## dgCMatrix
[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"
> fx[,6000] <- (tC <- rep(thisCol, length.out=nrow(fx)))# fine
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
> thCol <- fx[,2000]
> fx[,5762] <- thCol# fine
replCmat[x,i,j,..,val] : nargs()=4; missing (i,j) = (1,0)
> stopifnot(is(f, "ngCMatrix"), is(fx, "dgCMatrix"),
+ identical(thisCol, f[,5762]),# perfect
+ identical(as.logical(fx[,6000]), tC),
+ identical(thCol, fx[,5762]))
>
> showProc.time()
Time (user system elapsed): 0.416 0.05 0.465
> options(op)# revert
> ##
> if(doExtras) {#-----------------------------------------------------------------
+ cat("checkMatrix() of all: \n---------\n")
+ Sys.setlocale("LC_COLLATE", "C")# to keep ls() reproducible
+ for(nm in ls()) if(is(.m <- get(nm), "Matrix")) {
+ cat(nm, "\n")
+ checkMatrix(.m, verbose = FALSE
+ , doDet = nm != "As" ## <- "As" almost singular <=> det() "ill posed"
+ )
+ }
+ showProc.time()
+ }#--------------end if(doExtras) -----------------------------------------------
>
> ## Bugs found by Peter Ralph
> n <- 17
> x <- Matrix(0, n,n) # "ddiMatrix" now
> ## x must have at least three nonzero entries
> x[1,1] <- x[2,1:2] <- 1.; class(x) # "dtC"
[1] "dtCMatrix"
attr(,"package")
[1] "Matrix"
> x0 <- x <- as(x,"generalMatrix") # if x is dgCMatrix, no error
> ##
> z <- matrix(x) # <== not the "Matrix way": a (n, 1) matrix
> z[1] <- 0
>
> x[1:n, 1:n] <- as(z, "sparseVector")
> ## gave Error: ... invalid subscript type 'S4'
> x2 <- x
>
> dim(zC <- as(z, "CsparseMatrix"))
[1] 289 1
> x <- x0
> x[] <- zC # did fail, then gave warning.
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> x1 <- x
> ##
> x <- x0
> x[] <- as(zC, "sparseVector") # did fail, too
diagnosing replTmat(x,i,j,v): nargs()= 3; missing (i,j) = (0,1)
> x2 <- x
> stopifnot(identical(x1,x2))
> x <- as(x0, "matrix")
> x[] <- z
> assert.EQ.mat(x1, x)
>
> i <- 4:7
> x1 <- x0; x1[cbind(i, i+10)] <- i^2
> x2 <- x0; x2[cbind(i, i+10)] <- as(i^2, "matrix")
> ## failed: nargs() = 4 ... please report
>
> class(x1) # was "dgT", now "dgC"
[1] "dgCMatrix"
attr(,"package")
[1] "Matrix"
> stopifnot(isValid(x1, class(x1)), identical(x1, x2))
> showProc.time()
Time (user system elapsed): 0.011 0 0.012
>
>
> ## check valid indexing (using *random* indices, often duplicated):
> chk_dsp_ind <- function(sv, n=512, negI = FALSE, verbose=FALSE) {
+ stopifnot(inherits(sv, "dsparseVector"), n >= 1)
+ d <- length(sv)
+ ## lambda=2 ==> aiming for short 'i' {easier to work with}
+ P <- rpois(n, lambda = if(negI) 5 else 2)
+ for(i in seq_len(n)) {
+ I <-
+ if(negI) { # negative indices: 2 are, 4 neither ... always "valid" !!
+ k <- max(4L, d - max(1L, P[i]))
+ if(verbose) cat(sprintf("size=k = %2d: ", k))
+ - sort(sample.int(d, size=k))# replace=FALSE
+ }
+ else
+ sample.int(d, size=1L+P[i], replace=TRUE)
+ ##
+ validObject(ss <- sv[I]) # Error if not true
+ }
+ invisible()
+ }
> s <- as(c(3,5,6), "sparseVector")
> set.seed(11); chk_dsp_ind(s)
> set.seed(3)
> (s2 <- as(rsparsematrix(ncol=1, nrow=37, density=1/4),"sparseVector"))
sparse vector (nnz/length = 9/37) of class "dsparseVector"
[1] . . . -2.200 . . 0.330 . -1.300 .
[11] . 0.950 . 0.140 . . 0.810 . . 0.540
[21] . . . . . . . . . 0.013
[31] . . -0.580 . . . .
> (s3 <- as(rsparsematrix(ncol=1, nrow=64, density=1/4),"sparseVector"))
sparse vector (nnz/length = 16/64) of class "dsparseVector"
[1] . . . . . . . . 1.80 . 2.50 .
[13] . . -0.76 . . . -0.58 . . . -0.80 0.84
[25] . . 1.30 . . . -0.51 . . . . -0.62
[37] . . . 0.71 . . . . . . -1.30 .
[49] -1.60 . . . . 0.10 . . -1.30 . 0.18 .
[61] . . . -1.30
> set.seed(1)
> chk_dsp_ind(s2)
> chk_dsp_ind(s3)
> ##
> set.seed(47)
> ## system.time(e.N2 <- chk_dsp_ind(s2, negI=TRUE, verbose=TRUE))
> chk_dsp_ind(s2, negI=TRUE)
> chk_dsp_ind(s3, negI=TRUE)
>
> iv <- c(rep(0,100), 3, 0,0,7,0,0,0)
> sv0 <- sv <- as(iv, "sparseVector")
> sv.0 <- sv. <- as(as.integer(iv), "sparseVector")
> stopifnot(canCoerce("integer", "sparseVector"))
> sv2 <- as(sv, "isparseVector")
> stopifnot(validObject(sv), validObject(sv2), identical(sv., sv2),
+ sv == sv.)
> n0 <- sv. != 0 # -> is "lsparseV.."
>
> sv [n0] <- sv [n0]
> sv.[n0] <- sv.[n0] # gave error
> stopifnot(identical(sv , sv0),
+ identical(sv., sv.0))
> sv [3:7] <- 0
> sv.[3:7] <- 0L
> stopifnot(identical(sv , sv0), identical(sv., sv.0))
> sv [2:4] <- 2:4
> sv.[2:4] <- 2:4
> stopifnot(which(sv != 0) == (which(sv. != 0) -> in0),
+ in0 == c(2:4, 101L, 104L))
> sv [2:6] <- 0L
> sv.[2:6] <- 0L
> stopifnot(identical(sv , sv0), identical(sv., sv.0))
>
> ## the next six *all* gave an error -- but should be no-op's:
> for(vv in list(sv, sv.0))
+ for(ind in list(0, FALSE, logical(length(vv))))
+ vv[ind] <- NA
> stopifnot(identical(sv , sv0), identical(sv., sv.0))
>
> ## <sparseVector>[i] <- val -- failed to resort @i sometimes: (R-forge Matrix bug #6659)
> y1 <- sparseVector(1:3, 13:15, 16)
> y2 <- sparseVector(1:6, c(5, 6, 7, 9, 14, 15), 16)
> i <- 1:16*12 # 12 24 36 ... 192
> x <- sparseVector(numeric(1), 1, length=200)
> x[i] <- y1 ; validObject(x[i]) # TRUE
[1] TRUE
> N <- x[i] + y2 ; validObject( N ) # TRUE
[1] TRUE
> x[i] <- N ## <== bug was here ..
> validObject(x)
[1] TRUE
> ## gave 'Error' invalid .."dsparseVector".. 'i' must be sorted strictly increasingly
> stopifnot(all.equal(x[i] , y1+y2, tolerance=0),
+ x[i] == y1+y2)
> showProc.time()
Time (user system elapsed): 0.24 0.003 0.243
>
> if(!interactive()) warnings()
>
> ## [matrix-Bugs][#6720] Subsetting with empty indices does not drop -- 17 Apr 2021, by David Cortes
> ## https://r-forge.r-project.org/tracker/?func=detail&atid=294&aid=6720&group_id=61
>
> ## extended by MM to all versions of "empty" :
> x <- c(1,8)
> (m1 <- rbind(x))
[,1] [,2]
x 1 8
> m1[] # remains matrix
[,1] [,2]
x 1 8
> m1[,,drop=FALSE] # ditto
[,1] [,2]
x 1 8
> m1[,] # [1] 1 2 -- drops (as default drop=TRUE !)
[1] 1 8
>
> ## Sparse Matrix and actually *any* Matrix-extending class did not work
> (M1 <- as(m1, "denseMatrix")) # "dgeMatrix"
1 x 2 Matrix of class "dgeMatrix"
[,1] [,2]
x 1 8
> S1 <- as(m1, "CsparseMatrix")
> R1 <- as(m1, "RsparseMatrix")
> stopifnot(exprs = {
+ identical(M1[], M1) # remains
+ identical(S1[], S1) # remains
+ identical(R1[], R1) # remains
+ identical(M1[,,drop=FALSE], M1) # ditto
+ identical(S1[,,drop=FALSE], S1) # "
+ identical(R1[,,drop=FALSE], R1) # "
+ ## but drop=TRUE which is the *default* much be obeyed (also for *empty* (i,j):
+ identical(m1[,], x)
+ identical(M1[,], x) # should drop, but did not
+ identical(S1[,], x) # "
+ identical(R1[,], x) # "
+ identical(m1[,,drop=TRUE], x)
+ identical(M1[,,drop=TRUE], x) # should drop, but did not
+ identical(S1[,,drop=TRUE], x) # "
+ identical(R1[,,drop=TRUE], x) # "
+ })
>
>
> ## [matrix-Bugs][#6721] Assignment to 'dgRMatrix' with missing index takes only first element
> ## MM: This has been fixed already!
> X <- rbind(0, 1:3, 0, c(0,1,0))
> Rx <- as(X, "RsparseMatrix")
> Cx <- as(X, "CsparseMatrix")
> X [2,] <- 0
> Cx[2,] <- 0
> Rx[2,] <- 0
> stopifnot(all(Cx == X),
+ all(Rx == X))
>
> ## [matrix-Bugs][#6745] show(<large sparseVector>)
> ## NB: is from a bug in head(*); *only* applies to *empty* sparseV: length(x@i) == 0
> op <- options(max.print=999)
> ( s0 <- sparseVector(i=integer(), length=2^33)) # show -> head() failed in Matrix <= 1.3-*
sparse vector (nnz/length = 0/8589934592) of class "nsparseVector"
[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[75] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[112] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[149] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[186] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[223] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[260] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[297] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[334] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[371] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[408] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[445] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[482] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[519] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[556] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[593] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[630] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[667] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[704] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[741] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[778] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[815] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[852] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[889] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[926] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[963] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
............................
........suppressing 8589933593 entries in show(); maybe adjust options(max.print=)
............................
> (xs0 <- sparseVector(i=integer(), length=2^33, x = numeric()))# ditto
sparse vector (nnz/length = 0/8589934592) of class "dsparseVector"
[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[75] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[112] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[149] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[186] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[223] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[260] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[297] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[334] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[371] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[408] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[445] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[482] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[519] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[556] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[593] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[630] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[667] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[704] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[741] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[778] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[815] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[852] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[889] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[926] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[963] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
............................
........suppressing 8589933593 entries in show(); maybe adjust options(max.print=)
............................
> options(op); tail(s0) ; tail(xs0) # (always worked)
sparse vector (nnz/length = 0/6) of class "nsparseVector"
[1] . . . . . .
sparse vector (nnz/length = 0/6) of class "dsparseVector"
[1] . . . . . .
> ## *related* bug in `[` --> needed to fix intIv() for such large sparseVectors
> stopifnot(exprs = {
+ identical(s0[length(s0) - 3:0], # gave Error in if (any(i < 0L)) { : missing value ....
+ new("nsparseVector", i=integer(), length=4L))
+ identical(xs0[length(s0) - 3:0], # gave Error ..
+ new("dsparseVector", i=integer(), length=4L))
+ })
>
> ## Yielded an invalid object in Matrix <= 1.4-1, instead of throwing error
> llc04 <- new("dgCMatrix", Dim = c(4L, 0L))
> c40 <- new("dgCMatrix", Dim = c(0L, 4L), p = integer(5L))
> assertError(c04[1L, ] <- 1)
> assertError(c40[, 1L] <- 1)
>
> ## Indexing with nMatrix rather than lMatrix
> set.seed(3601)
> gC <- rsparsematrix(6, 6, 0.6)
> gC@x[sample.int(length(gC@x), 6L)] <- NA
> ni <- is.na(gC)
> li <- as(ni, "lMatrix")
> stopifnot(identical(gC[ ni], gC[ li]),
+ identical(gC[!ni], gC[!li]))
>
> ## Dispatch thinko in Matrix <= 1.5-4
> R0 <- R. <-
+ new("dgRMatrix",
+ Dim = c(12L, 12L),
+ p = c(0L, 0L, 4L, 5L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 16L),
+ j = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 7L, 8L, 4L, 7L, 9L, 9L, 10L, 11L),
+ x = as.double(1:16))
> R.[1:2, ] <- R.[1:2, ] # was an error
> stopifnot(identical(R0, as(R., "RsparseMatrix")))
>
> ## Didn't drop dimensions ...
> stopifnot(identical(t(as(1:6,"CsparseMatrix"))[TRUE, ], as.double(1:6)))
>
> ## Was briefly wrong prior to Matrix 1.6-0
> set.seed(0)
> S <- new("dsyMatrix", Dim = c(4L, 4L), x = rnorm(16L))
> Sii <- S[4:1, 4:1]
> stopifnot(exprs = {
+ is(Sii, "dsyMatrix")
+ Sii@uplo == "L"
+ identical(as(Sii, "matrix"), as(S, "matrix")[4:1, 4:1])
+ })
>
> ## Bug #6839: regression in <.s[CT]Matrix>[<logical>] in Matrix 1.6-z
> x <- new("dsCMatrix", Dim = c(4L, 4L),
+ p = cumsum(0:4), i = sequence(1:4) - 1L, x = as.double(1:10))
> i <- c(TRUE, FALSE)
> xi <- as(x, "matrix")[i]
> for(cl in paste0(c("C", "R", "T"), "sparseMatrix"))
+ stopifnot(identical(as(x, cl)[i], xi))
>
> proc.time()
user system elapsed
2.300 0.127 2.425