2025-01-12 00:52:51 +08:00

515 lines
12 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

R Under development (unstable) (2013-02-09 r61878) -- "Unsuffered Consequences"
Copyright (C) 2013 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> pkgname <- "spatial"
> source(file.path(R.home("share"), "R", "examples-header.R"))
> options(warn = 1)
> library('spatial')
>
> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
> cleanEx()
> nameEx("Kaver")
> ### * Kaver
>
> flush(stderr()); flush(stdout())
>
> ### Name: Kaver
> ### Title: Average K-functions from Simulations
> ### Aliases: Kaver
> ### Keywords: spatial
>
> ### ** Examples
>
> towns <- ppinit("towns.dat")
> par(pty="s")
> plot(Kfn(towns, 40), type="b")
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
> for(i in 1:10) lines(Kfn(Psim(69), 10))
> lims <- Kenvl(10,100,Psim(69))
> lines(lims$x,lims$lower, lty=2, col="green")
> lines(lims$x,lims$upper, lty=2, col="green")
> lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Kenvl")
> ### * Kenvl
>
> flush(stderr()); flush(stdout())
>
> ### Name: Kenvl
> ### Title: Compute Envelope and Average of Simulations of K-fns
> ### Aliases: Kenvl
> ### Keywords: spatial
>
> ### ** Examples
>
> towns <- ppinit("towns.dat")
> par(pty="s")
> plot(Kfn(towns, 40), type="b")
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
> for(i in 1:10) lines(Kfn(Psim(69), 10))
> lims <- Kenvl(10,100,Psim(69))
> lines(lims$x,lims$lower, lty=2, col="green")
> lines(lims$x,lims$upper, lty=2, col="green")
> lines(Kaver(10,25,Strauss(69,0.5,3.5)), col="red")
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Kfn")
> ### * Kfn
>
> flush(stderr()); flush(stdout())
>
> ### Name: Kfn
> ### Title: Compute K-fn of a Point Pattern
> ### Aliases: Kfn
> ### Keywords: spatial
>
> ### ** Examples
>
> towns <- ppinit("towns.dat")
> par(pty="s")
> plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Psim")
> ### * Psim
>
> flush(stderr()); flush(stdout())
>
> ### Name: Psim
> ### Title: Simulate Binomial Spatial Point Process
> ### Aliases: Psim
> ### Keywords: spatial
>
> ### ** Examples
>
> towns <- ppinit("towns.dat")
> par(pty="s")
> plot(Kfn(towns, 10), type="s", xlab="distance", ylab="L(t)")
> for(i in 1:10) lines(Kfn(Psim(69), 10))
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSI")
> ### * SSI
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSI
> ### Title: Simulates Sequential Spatial Inhibition Point Process
> ### Aliases: SSI
> ### Keywords: spatial
>
> ### ** Examples
>
> towns <- ppinit("towns.dat")
> par(pty = "s")
> plot(Kfn(towns, 10), type = "b", xlab = "distance", ylab = "L(t)")
> lines(Kaver(10, 25, SSI(69, 1.2)))
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Strauss")
> ### * Strauss
>
> flush(stderr()); flush(stdout())
>
> ### Name: Strauss
> ### Title: Simulates Strauss Spatial Point Process
> ### Aliases: Strauss
> ### Keywords: spatial
>
> ### ** Examples
>
> towns <- ppinit("towns.dat")
> par(pty="s")
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
> lines(Kaver(10, 25, Strauss(69,0.5,3.5)))
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("anova.trls")
> ### * anova.trls
>
> flush(stderr()); flush(stdout())
>
> ### Name: anova.trls
> ### Title: Anova tables for fitted trend surface objects
> ### Aliases: anova.trls anovalist.trls
> ### Keywords: spatial
>
> ### ** Examples
>
> library(stats)
> data(topo, package="MASS")
> topo0 <- surf.ls(0, topo)
> topo1 <- surf.ls(1, topo)
> topo2 <- surf.ls(2, topo)
> topo3 <- surf.ls(3, topo)
> topo4 <- surf.ls(4, topo)
> anova(topo0, topo1, topo2, topo3, topo4)
Analysis of Variance Table
Model 1: surf.ls(np = 0, x = topo)
Model 2: surf.ls(np = 1, x = topo)
Model 3: surf.ls(np = 2, x = topo)
Model 4: surf.ls(np = 3, x = topo)
Model 5: surf.ls(np = 4, x = topo)
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 51 196030
2 49 67186 2 128844 46.9843 4.040e-12
3 46 39958 3 27228 10.4482 2.325e-05
4 42 21577 4 18381 8.9447 2.558e-05
5 37 14886 5 6691 3.3265 0.014
> summary(topo4)
Analysis of Variance Table
Model: surf.ls(np = 4, x = topo)
Sum Sq Df Mean Sq F value Pr(>F)
Regression 181144.0 14 12938.8567 32.16092 2.2204e-16
Deviation 14885.7 37 402.3162
Total 196029.7 51
Multiple R-Squared: 0.9241, Adjusted R-squared: 0.8953
AIC: (df = 15) 324.1594
Fitted:
Min 1Q Median 3Q Max
702.1 785.0 836.3 880.5 939.1
Residuals:
Min 1Q Median 3Q Max
-34.077 -12.568 -2.085 14.056 50.161
>
>
>
> cleanEx()
> nameEx("correlogram")
> ### * correlogram
>
> flush(stderr()); flush(stdout())
>
> ### Name: correlogram
> ### Title: Compute Spatial Correlograms
> ### Aliases: correlogram
> ### Keywords: spatial
>
> ### ** Examples
>
> data(topo, package="MASS")
> topo.kr <- surf.ls(2, topo)
> correlogram(topo.kr, 25)
> d <- seq(0, 7, 0.1)
> lines(d, expcov(d, 0.7))
>
>
>
> cleanEx()
> nameEx("expcov")
> ### * expcov
>
> flush(stderr()); flush(stdout())
>
> ### Name: expcov
> ### Title: Spatial Covariance Functions
> ### Aliases: expcov gaucov sphercov
> ### Keywords: spatial
>
> ### ** Examples
>
> data(topo, package="MASS")
> topo.kr <- surf.ls(2, topo)
> correlogram(topo.kr, 25)
> d <- seq(0, 7, 0.1)
> lines(d, expcov(d, 0.7))
>
>
>
> cleanEx()
> nameEx("ppinit")
> ### * ppinit
>
> flush(stderr()); flush(stdout())
>
> ### Name: ppinit
> ### Title: Read a Point Process Object from a File
> ### Aliases: ppinit
> ### Keywords: spatial
>
> ### ** Examples
>
> towns <- ppinit("towns.dat")
> par(pty="s")
> plot(Kfn(towns, 10), type="b", xlab="distance", ylab="L(t)")
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("pplik")
> ### * pplik
>
> flush(stderr()); flush(stdout())
>
> ### Name: pplik
> ### Title: Pseudo-likelihood Estimation of a Strauss Spatial Point Process
> ### Aliases: pplik
> ### Keywords: spatial
>
> ### ** Examples
>
> pines <- ppinit("pines.dat")
> pplik(pines, 0.7)
[1] 0.1508756
>
>
>
> cleanEx()
> nameEx("predict.trls")
> ### * predict.trls
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.trls
> ### Title: Predict method for trend surface fits
> ### Aliases: predict.trls
> ### Keywords: spatial
>
> ### ** Examples
>
> data(topo, package="MASS")
> topo2 <- surf.ls(2, topo)
> topo4 <- surf.ls(4, topo)
> x <- c(1.78, 2.21)
> y <- c(6.15, 6.15)
> z2 <- predict(topo2, x, y)
> z4 <- predict(topo4, x, y)
> cat("2nd order predictions:", z2, "\n4th order predictions:", z4, "\n")
2nd order predictions: 756.0682 747.0624
4th order predictions: 765.5547 742.3738
>
>
>
> cleanEx()
> nameEx("prmat")
> ### * prmat
>
> flush(stderr()); flush(stdout())
>
> ### Name: prmat
> ### Title: Evaluate Kriging Surface over a Grid
> ### Aliases: prmat
> ### Keywords: spatial
>
> ### ** Examples
>
> data(topo, package="MASS")
> topo.kr <- surf.gls(2, expcov, topo, d=0.7)
> prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
> contour(prsurf, levels=seq(700, 925, 25))
>
>
>
> cleanEx()
> nameEx("semat")
> ### * semat
>
> flush(stderr()); flush(stdout())
>
> ### Name: semat
> ### Title: Evaluate Kriging Standard Error of Prediction over a Grid
> ### Aliases: semat
> ### Keywords: spatial
>
> ### ** Examples
>
> data(topo, package="MASS")
> topo.kr <- surf.gls(2, expcov, topo, d=0.7)
> prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
> contour(prsurf, levels=seq(700, 925, 25))
> sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
> contour(sesurf, levels=c(22,25))
>
>
>
> cleanEx()
> nameEx("surf.gls")
> ### * surf.gls
>
> flush(stderr()); flush(stdout())
>
> ### Name: surf.gls
> ### Title: Fits a Trend Surface by Generalized Least-squares
> ### Aliases: surf.gls
> ### Keywords: spatial
>
> ### ** Examples
>
> library(MASS) # for eqscplot
> data(topo, package="MASS")
> topo.kr <- surf.gls(2, expcov, topo, d=0.7)
> trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
> eqscplot(trsurf, type = "n")
> contour(trsurf, add = TRUE)
>
> prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
> contour(prsurf, levels=seq(700, 925, 25))
> sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
> eqscplot(sesurf, type = "n")
> contour(sesurf, levels = c(22, 25), add = TRUE)
>
>
>
> cleanEx()
detaching package:MASS
> nameEx("surf.ls")
> ### * surf.ls
>
> flush(stderr()); flush(stdout())
>
> ### Name: surf.ls
> ### Title: Fits a Trend Surface by Least-squares
> ### Aliases: surf.ls
> ### Keywords: spatial
>
> ### ** Examples
>
> library(MASS) # for eqscplot
> data(topo, package="MASS")
> topo.kr <- surf.ls(2, topo)
> trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
> eqscplot(trsurf, type = "n")
> contour(trsurf, add = TRUE)
> points(topo)
>
> eqscplot(trsurf, type = "n")
> contour(trsurf, add = TRUE)
> plot(topo.kr, add = TRUE)
> title(xlab= "Circle radius proportional to Cook's influence statistic")
>
>
>
> cleanEx()
detaching package:MASS
> nameEx("trls.influence")
> ### * trls.influence
>
> flush(stderr()); flush(stdout())
>
> ### Name: trls.influence
> ### Title: Regression diagnostics for trend surfaces
> ### Aliases: trls.influence plot.trls
> ### Keywords: spatial
>
> ### ** Examples
>
> library(MASS) # for eqscplot
> data(topo, package = "MASS")
> topo2 <- surf.ls(2, topo)
> infl.topo2 <- trls.influence(topo2)
> (cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5, ])
r hii stresid Di
1 61.21889 0.35476783 2.585852 0.61275133
4 -45.58507 0.13493260 -1.662930 0.07188916
12 44.71663 0.21022336 1.707234 0.12930392
31 52.05575 0.07154233 1.833006 0.04314966
37 54.75944 0.06974770 1.926349 0.04637112
48 97.75499 0.08574061 3.468809 0.18807312
50 -63.25149 0.27530059 -2.520972 0.40237779
> cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
> trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
> eqscplot(trsurf, type = "n")
> contour(trsurf, add = TRUE, col = "grey")
> plot(topo2, add = TRUE, div = 3)
> points(cand.xy, pch = 16, col = "orange")
> text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)
>
>
>
> cleanEx()
detaching package:MASS
> nameEx("trmat")
> ### * trmat
>
> flush(stderr()); flush(stdout())
>
> ### Name: trmat
> ### Title: Evaluate Trend Surface over a Grid
> ### Aliases: trmat
> ### Keywords: spatial
>
> ### ** Examples
>
> data(topo, package="MASS")
> topo.kr <- surf.ls(2, topo)
> trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
>
>
>
> cleanEx()
> nameEx("variogram")
> ### * variogram
>
> flush(stderr()); flush(stdout())
>
> ### Name: variogram
> ### Title: Compute Spatial Variogram
> ### Aliases: variogram
> ### Keywords: spatial
>
> ### ** Examples
>
> data(topo, package="MASS")
> topo.kr <- surf.ls(2, topo)
> variogram(topo.kr, 25)
>
>
>
> ### * <FOOTER>
> ###
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
Time elapsed: 0.713 0.036 0.776 0 0
> grDevices::dev.off()
null device
1
> ###
> ### Local variables: ***
> ### mode: outline-minor ***
> ### outline-regexp: "\\(> \\)?### [*]+" ***
> ### End: ***
> quit('no')