2025-01-12 00:52:51 +08:00

137 lines
2.9 KiB
Plaintext

<%@include file="includes/setup.md.rsp"%>
<%@string colname="colVars"%>
<%@string rowname="rowVars"%>
<%@meta title="${colname}() and ${rowname}() benchmarks"%>
<%@meta author="Henrik Bengtsson"%>
<%@meta date="2015-01-06"%>
<%@include file="${header}"%>
<%@string test_genefilter="TRUE"%>
<%@ifeq test_genefilter="TRUE"%>
<%
use("genefilter", how = "load")
genefilter_rowVars <- genefilter::rowVars
genefilter_colVars <- function(x, ...) genefilter_rowVars(t(x), ...)
%>
<%@endif%>
# <%@meta name="title"%>
This report benchmark the performance of <%=colname%>() and <%=rowname%>() against alternative methods.
## Alternative methods
* apply() + var()
* colVarColMeans() and rowVarColMeans()
<%@ifeq test_genefilter="TRUE"%>
* genefilter::rowVars(t(.)) and genefilter::rowVars()
<%@endif%>
where
```r
<%=withCapture({
colVarColMeans <- function(x, na.rm = TRUE) {
if (na.rm) {
n <- colSums(!is.na(x))
} else {
n <- nrow(x)
}
var <- colMeans(x*x, na.rm = na.rm) - (colMeans(x, na.rm = na.rm))^2
var * n/(n-1)
}
})%>
```
and
```r
<%=withCapture({
rowVarRowMeans <- function(x, na.rm = TRUE) {
if (na.rm) {
n <- rowSums(!is.na(x))
} else {
n <- ncol(x)
}
mu <- rowMeans(x, na.rm = na.rm)
var <- rowMeans(x*x, na.rm = na.rm) - mu^2
var * (n/(n-1))
}
})%>
```
<% for (mode in c("integer", "double")) { %>
## Data type "<%=mode%>"
### Data
```r
<%=withCapture({
<%@include file="R/random-matrices.R"%>
data <- rmatrices(mode = mode)
})%>
```
### Results
<% for (dataLabel in names(data)) { %>
<% mprintf("%s: %s\n", mode, dataLabel) %>
#### <%=dataLabel%> <%=mode%> matrix
```r
<%=withCapture({
X <- data[[.dataLabel.]]
gc()
colStats <- microbenchmark(
colVars = colVars(X, na.rm = FALSE),
colVarsCenter = colVars(X, center = colMeans(X, na.rm = FALSE), na.rm = FALSE),
colVarColMeans = colVarColMeans(X, na.rm = FALSE),
"apply+var" = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE),
<%@ifeq test_genefilter="TRUE"%>
"genefilter::rowVars(t(.))" = genefilter_colVars(X, na.rm = FALSE),
<%@endif%>
unit = "ms"
)
X <- t(X)
gc()
rowStats <- microbenchmark(
rowVars = rowVars(X, na.rm = FALSE),
rowVarsCenter = rowVars(X, center = rowMeans(X, na.rm = FALSE), na.rm = FALSE),
rowVarRowMeans = rowVarRowMeans(X, na.rm = FALSE),
"apply+var" = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE),
<%@ifeq test_genefilter="TRUE"%>
"genefilter::rowVars" = genefilter_rowVars(X, na.rm = FALSE),
<%@endif%>
unit = "ms"
)
})%>
```
<% crBenchmarkResults(colStats, rowStats, tags=c(mode, dataLabel)) %>
<% } # for (dataLabel ...) %>
<% } # for (mode ...) %>
<%@include file="${footer}"%>
<%---------------------------------------------------------------------------
HISTORY:
2015-01-06
o Now benchmarking 'genefilter' functions too.
2014-11-23
o Now benchmarking rowVars() instead of rowSds() since the latter uses
the former.
2014-06-09
o Created.
---------------------------------------------------------------------------%>