44 lines
1.2 KiB
R
44 lines
1.2 KiB
R
library(foreach)
|
|
library(RSQLite)
|
|
|
|
# Define a simple iterator for a query result, which is
|
|
# just a wrapper around the fetch function.
|
|
iquery <- function(con, statement, ..., n=1) {
|
|
rs <- dbSendQuery(con, statement, ...)
|
|
nextEl <- function() {
|
|
d <- fetch(rs, n)
|
|
if (nrow(d) == 0) {
|
|
dbClearResult(rs)
|
|
stop('StopIteration')
|
|
}
|
|
d
|
|
}
|
|
obj <- list(nextElem=nextEl)
|
|
class(obj) <- c('abstractiter', 'iter')
|
|
obj
|
|
}
|
|
|
|
# Create an SQLite instance.
|
|
m <- dbDriver('SQLite')
|
|
|
|
# Initialize a new database to a tempfile and copy a data frame
|
|
# into it repeatedly to get more data to process.
|
|
tfile <- tempfile()
|
|
con <- dbConnect(m, dbname=tfile)
|
|
data(USArrests)
|
|
dbWriteTable(con, 'USArrests', USArrests)
|
|
for (i in 1:99)
|
|
dbWriteTable(con, 'USArrests', USArrests, append=TRUE)
|
|
|
|
# Create an iterator to issue the query, selecting the fields of interest.
|
|
# We then compute the maximum of each of those fields, 100 records at a time.
|
|
qit <- iquery(con, 'select Murder, Assault, Rape from USArrests', n=100)
|
|
r <- foreach(d=qit, .combine='pmax', .packages='foreach') %dopar% {
|
|
foreach(x=iter(d, by='col'), .combine='c') %do% max(x)
|
|
}
|
|
print(r)
|
|
|
|
# Clean up
|
|
dbDisconnect(con)
|
|
file.remove(tfile)
|