69 lines
2.5 KiB
R
69 lines
2.5 KiB
R
#
|
|
# Formal test of the quantile routine for survfit
|
|
library(survival)
|
|
aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...)
|
|
|
|
# There are 8 cases: strata Y/N, ncol(surv) >1, conf.int = T/F
|
|
# Subcase: the quantile exactly agrees with a horizontal segment of
|
|
# the curve or not.
|
|
# First do the 4 cases where fit$surv is a vector
|
|
#
|
|
test1 <- data.frame(time= c(9, 3,1,1,6,6,8, 10),
|
|
status=c(1,NA,1,0,1,1,0, 0),
|
|
x= c(0, 2,1,1,1,0,0, 0))
|
|
|
|
# True survival = (6/7) * (3/5) * (1/2) for overall
|
|
# The q's are chosen to include a point < first jump, mid, after last jump,
|
|
# and exact intersections with the "flats" of the curve.
|
|
#
|
|
qq <- c(13/14, 6/7, 2/3, .5, 9/35, .1)
|
|
|
|
# Nothing on the right hand side, simple survival (no strata)
|
|
fit1 <- survfit(Surv(time, status) ~ 1, test1, conf.type='none')
|
|
aeq(quantile(fit1, 1-qq), c(1, 3.5, 6, 9, 9.5, NA)) #without conf.int
|
|
|
|
fit2 <- survfit(Surv(time, status) ~ 1, test1) #with conf.int
|
|
aeq(quantile(fit2, 1-qq),
|
|
list(quantile = c(1, 3.5, 6, 9, 9.5, NA),
|
|
lower = c(1,1,1,6,6,9),
|
|
upper = rep(as.numeric(NA), 6)), check.attributes=FALSE)
|
|
aeq(quantile(fit2, 1-qq, FALSE), c(1, 3.5, 6, 9, 9.5, NA))
|
|
|
|
|
|
# Now a variable on the right (strata in the result)
|
|
# curve 0: (t=6, S=3/4), (t=9, S=3/8)
|
|
# curve 1: (t=1, S=2/3), (t=6, S= 0)
|
|
fit1 <- survfit(Surv(time, status) ~ x, test1, conf.type='none')
|
|
aeq(quantile(fit1, 1-qq),
|
|
matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T))
|
|
|
|
fit2 <- survfit(Surv(time, status) ~ x, test1)
|
|
aeq(quantile(fit2, 1-qq, FALSE),
|
|
matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T))
|
|
|
|
temp <- quantile(fit2, 1-qq)
|
|
aeq(temp$quantile, matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T))
|
|
aeq(temp$lower, matrix(c(6,6,6,6,9,9, 1,1,1,1, NA,NA), nrow=2, byrow=T))
|
|
aeq(temp$upper, rep(as.numeric(NA), 12))
|
|
|
|
# Second major case set -- a survfit object where fit$surv is a matrix
|
|
# This arises from coxph models
|
|
# There is only 1 subject with ph.ecog=3 which is a nice edge case
|
|
cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), lung)
|
|
sfit <- survfit(cfit, newdata=data.frame(age=c(50, 70)))
|
|
qtot <- quantile(sfit, qq)
|
|
for (i in 1:4) {
|
|
for (j in 1:2) {
|
|
temp <- quantile(sfit[i,j], qq)
|
|
print(c(aeq(qtot$quantile[i,j,], temp$quantile),
|
|
aeq(qtot$upper[i,j,], temp$upper),
|
|
aeq(qtot$lower[i,j,], temp$lower)))
|
|
}
|
|
}
|
|
temp <- quantile(sfit, qq, conf.int=FALSE)
|
|
all.equal(qtot$quantile, temp)
|
|
|
|
|
|
|
|
|