243 lines
8.3 KiB
Plaintext
243 lines
8.3 KiB
Plaintext
|
|
R Under development (unstable) (2021-04-20 r80202) -- "Unsuffered Consequences"
|
|
Copyright (C) 2021 The R Foundation for Statistical Computing
|
|
Platform: x86_64-pc-linux-gnu (64-bit)
|
|
|
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
|
You are welcome to redistribute it under certain conditions.
|
|
Type 'license()' or 'licence()' for distribution details.
|
|
|
|
R is a collaborative project with many contributors.
|
|
Type 'contributors()' for more information and
|
|
'citation()' on how to cite R or R packages in publications.
|
|
|
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
|
'help.start()' for an HTML browser interface to help.
|
|
Type 'q()' to quit R.
|
|
|
|
> library(survival)
|
|
> aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...)
|
|
>
|
|
> # Check that estimates from a multi-state model agree with single state models
|
|
> # Use a simplified version of the myeloid data set
|
|
> tdata <- tmerge(myeloid[,1:3], myeloid, id=id, death=event(futime,death),
|
|
+ priortx = tdc(txtime), sct= event(txtime))
|
|
> tdata$event <- factor(with(tdata, sct + 2*death), 0:2,
|
|
+ c("censor", "sct", "death"))
|
|
> fit <- coxph(Surv(tstart, tstop, event) ~ trt + sex, tdata, id=id,
|
|
+ iter=4, x=TRUE, robust=FALSE)
|
|
>
|
|
> fit12 <- coxph(Surv(tstart, tstop, event=='sct') ~ trt + sex, tdata,
|
|
+ subset=(priortx==0), iter=4, x=TRUE)
|
|
> fit13 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata,
|
|
+ subset=(priortx==0), iter=4, x=TRUE)
|
|
> fit23 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata,
|
|
+ subset=(priortx==1), iter=4, x=TRUE)
|
|
> aeq(coef(fit), c(coef(fit12), coef(fit13), coef(fit23)))
|
|
[1] TRUE
|
|
> aeq(fit$loglik, fit12$loglik + fit13$loglik + fit23$loglik)
|
|
[1] TRUE
|
|
> temp <- matrix(0, 6,6)
|
|
> temp[1:2, 1:2] <- fit12$var
|
|
> temp[3:4, 3:4] <- fit13$var
|
|
> temp[5:6, 5:6] <- fit23$var
|
|
> aeq(fit$var, temp)
|
|
[1] TRUE
|
|
>
|
|
> # check out model.frame
|
|
> fita <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id)
|
|
> fitb <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id, model=TRUE)
|
|
> all.equal(model.frame(fita), fitb$model)
|
|
[1] "Component \"trt\": 'current' is not a factor"
|
|
> # model.frame fails due to an interal rule in R, factors vs characters
|
|
> # result when the xlev arg is in the call. So model.frame(fita) has trt
|
|
> # as a factor, not character.
|
|
>
|
|
> #check residuals
|
|
> indx1 <- which(fit$rmap[,2] ==1)
|
|
> indx2 <- which(fit$rmap[,2] ==2)
|
|
> indx3 <- which(fit$rmap[,2] ==3)
|
|
> aeq(residuals(fit), c(residuals(fit12), residuals(fit13), residuals(fit23)))
|
|
[1] TRUE
|
|
> aeq(residuals(fit)[indx1], residuals(fit12))
|
|
[1] TRUE
|
|
> aeq(residuals(fit)[indx2], residuals(fit13))
|
|
[1] TRUE
|
|
> aeq(residuals(fit)[indx3], residuals(fit23))
|
|
[1] TRUE
|
|
>
|
|
> # score residuals
|
|
> temp <- residuals(fit, type='score')
|
|
> aeq(temp[indx1, 1:2], residuals(fit12, type='score'))
|
|
[1] TRUE
|
|
> aeq(temp[indx2, 3:4], residuals(fit13, type='score'))
|
|
[1] TRUE
|
|
> aeq(temp[indx3, 5:6], residuals(fit23, type='score'))
|
|
[1] TRUE
|
|
>
|
|
> all(temp[indx1, 3:6] ==0)
|
|
[1] TRUE
|
|
> all(temp[indx2, c(1,2,5,6)] ==0)
|
|
[1] TRUE
|
|
> all(temp[indx3, 1:4]==0)
|
|
[1] TRUE
|
|
>
|
|
> temp <- residuals(fit, type="dfbeta")
|
|
> all(temp[indx1, 3:6] ==0)
|
|
[1] TRUE
|
|
> all(temp[indx2, c(1,2,5,6)] ==0)
|
|
[1] TRUE
|
|
> all(temp[indx3, 1:4]==0)
|
|
[1] TRUE
|
|
> aeq(temp[indx1, 1:2], residuals(fit12, type='dfbeta'))
|
|
[1] TRUE
|
|
> aeq(temp[indx2, 3:4], residuals(fit13, type='dfbeta'))
|
|
[1] TRUE
|
|
> aeq(temp[indx3, 5:6], residuals(fit23, type='dfbeta'))
|
|
[1] TRUE
|
|
>
|
|
> temp <- residuals(fit, type="dfbetas")
|
|
> all(temp[indx1, 3:6] ==0)
|
|
[1] TRUE
|
|
> all(temp[indx2, c(1,2,5,6)] ==0)
|
|
[1] TRUE
|
|
> all(temp[indx3, 1:4]==0)
|
|
[1] TRUE
|
|
> aeq(temp[indx1, 1:2], residuals(fit12, type='dfbetas'))
|
|
[1] TRUE
|
|
> aeq(temp[indx2, 3:4], residuals(fit13, type='dfbetas'))
|
|
[1] TRUE
|
|
> aeq(temp[indx3, 5:6], residuals(fit23, type='dfbetas'))
|
|
[1] TRUE
|
|
>
|
|
> # Schoenfeld and scaled shoenfeld have one row per event
|
|
> sr1 <- residuals(fit12, type="schoenfeld")
|
|
> sr2 <- residuals(fit13, type="schoenfeld")
|
|
> sr3 <- residuals(fit23, type="schoenfeld")
|
|
> end <- rep(1:3, c(nrow(sr1), nrow(sr2), nrow(sr3)))
|
|
> temp <- residuals(fit, type="schoenfeld")
|
|
> aeq(temp[end==1, 1:2], sr1)
|
|
[1] TRUE
|
|
> aeq(temp[end==2, 3:4], sr2)
|
|
[1] TRUE
|
|
> aeq(temp[end==3, 5:6], sr3)
|
|
[1] TRUE
|
|
> all(temp[end==1, 3:6] ==0)
|
|
[1] TRUE
|
|
> all(temp[end==2, c(1,2,5,6)] ==0)
|
|
[1] TRUE
|
|
> all(temp[end==3, 1:4] ==0)
|
|
[1] TRUE
|
|
>
|
|
>
|
|
> #The scaled Schoenfeld don't agree, due to the use of a robust
|
|
> # variance in fit, regular variance in fit12, fit13 and fit23
|
|
> #Along with being scaled by different event counts
|
|
> xfit <- fit
|
|
> xfit$var <- xfit$naive.var
|
|
> if (FALSE) {
|
|
+ xfit <- fit
|
|
+ xfit$var <- xfit$naive.var # fixes the first issue
|
|
+ temp <- residuals(xfit, type="scaledsch")
|
|
+ aeq(d1* temp[sindx1, 1:2], residuals(fit12, type='scaledsch'))
|
|
+ aeq(temp[sindx2, 3:4], residuals(fit13, type='scaledsch'))
|
|
+ aeq(temp[sindx3, 5:6], residuals(fit23, type='scaledsch'))
|
|
+ }
|
|
>
|
|
> if (FALSE) { # the predicted values are a work in progress
|
|
+ # predicted values differ because of different centering
|
|
+ c0 <- sum(fit$mean * coef(fit))
|
|
+ c12 <- sum(fit12$mean * coef(fit12))
|
|
+ c13 <- sum(fit13$mean* coef(fit13))
|
|
+ c23 <- sum(fit23$mean * coef(fit23))
|
|
+
|
|
+ aeq(predict(fit)+c0, c(predict(fit12)+c12, predict(fit13)+c13,
|
|
+ predict(fit23)+c23))
|
|
+ aeq(exp(predict(fit)), predict(fit, type='risk'))
|
|
+
|
|
+ # expected survival is independent of centering
|
|
+ aeq(predict(fit, type="expected"), c(predict(fit12, type="expected"),
|
|
+ predict(fit13, type="expected"),
|
|
+ predict(fit23, type="expected")))
|
|
+ }
|
|
> # predict(type='terms') is a matrix, centering changes as well
|
|
> if (FALSE) {
|
|
+ temp <- predict(fit, type='terms')
|
|
+ all(temp[indx1, 3:6] ==0)
|
|
+ all(temp[indx2, c(1,2,5,6)] ==0)
|
|
+ all(temp[indx3, 1:4]==0)
|
|
+ aeq(temp[indx1, 1:2], predict(fit12, type='terms'))
|
|
+ aeq(temp[indx2, 3:4], predict(fit13, type='terms'))
|
|
+ aeq(temp[indx3, 5:6], predict(fit23, type='terms'))
|
|
+ } # end of prediction section
|
|
>
|
|
> # The global and per strata zph tests will differ for the KM or rank
|
|
> # transform, because the overall and subset will have a different list
|
|
> # of event times, which changes the transformed value for all of them.
|
|
> # But identity and log are testable.
|
|
> test_a <- cox.zph(fit, transform="log",global=FALSE)
|
|
> test_a12 <- cox.zph(fit12, transform="log",global=FALSE)
|
|
> test_a13 <- cox.zph(fit13, transform="log", global=FALSE)
|
|
> test_a23 <- cox.zph(fit23, transform="log", global=FALSE)
|
|
> aeq(test_a$y[test_a$strata==1, 1:2], test_a12$y)
|
|
[1] TRUE
|
|
>
|
|
> aeq(test_a$table[1:2,], test_a12$table)
|
|
[1] TRUE
|
|
> aeq(test_a$table[3:4,], test_a13$table)
|
|
[1] TRUE
|
|
> aeq(test_a$table[5:6,], test_a23$table)
|
|
[1] TRUE
|
|
>
|
|
> # check cox.zph fit - transform = 'identity'
|
|
> test_b <- cox.zph(fit, transform="identity",global=FALSE)
|
|
> test_b12 <- cox.zph(fit12, transform="identity",global=FALSE)
|
|
> test_b13 <- cox.zph(fit13, transform="identity", global=FALSE)
|
|
> test_b23 <- cox.zph(fit23, transform="identity", global=FALSE)
|
|
>
|
|
> aeq(test_b$table[1:2,], test_b12$table)
|
|
[1] TRUE
|
|
> aeq(test_b$table[3:4,], test_b13$table)
|
|
[1] TRUE
|
|
> aeq(test_b$table[5:6,], test_b23$table)
|
|
[1] TRUE
|
|
>
|
|
> # check out subscripting of a multi-state zph
|
|
> cname <- c("table", "x", "time", "y", "var")
|
|
> sapply(cname, function(x) aeq(test_b[1:2]$x, test_b12$x))
|
|
table x time y var
|
|
TRUE TRUE TRUE TRUE TRUE
|
|
> sapply(cname, function(x) aeq(test_b[3:4]$x, test_b13$x))
|
|
table x time y var
|
|
TRUE TRUE TRUE TRUE TRUE
|
|
> sapply(cname, function(x) aeq(test_b[5:6]$x, test_b23$x))
|
|
table x time y var
|
|
TRUE TRUE TRUE TRUE TRUE
|
|
>
|
|
> # check model.matrix
|
|
> mat1 <- model.matrix(fit)
|
|
> all.equal(mat1, fit$x)
|
|
[1] TRUE
|
|
>
|
|
> # Check that the internal matix agrees (uses stacker, which is not exported)
|
|
> mat2 <- model.matrix(fit12)
|
|
> mat3 <- model.matrix(fit13)
|
|
> mat4 <- model.matrix(fit23)
|
|
>
|
|
> # first reconstruct istate
|
|
> tcheck <- survcheck(Surv(tstart, tstop, event) ~ 1, tdata, id=id)
|
|
> temp <- survival:::stacker(fit$cmap, fit$smap, as.numeric(tcheck$istate), fit$x,
|
|
+ fit$y, NULL, fit$states)
|
|
> aeq(temp$X[temp$transition==1, 1:2], mat2)
|
|
[1] TRUE
|
|
> aeq(temp$X[temp$transition==2, 3:4], mat3)
|
|
[1] TRUE
|
|
> aeq(temp$X[temp$transition==3, 5:6], mat4)
|
|
[1] TRUE
|
|
>
|
|
>
|
|
>
|
|
> proc.time()
|
|
user system elapsed
|
|
1.314 0.113 1.428
|