2025-01-12 04:36:52 +08:00

147 lines
31 KiB
HTML

<!DOCTYPE html>
<html>
<!--
%\VignetteEngine{knitr::knitr_notangle}
%\VignetteIndexEntry{An R HTML Vignette with knitr}
-->
<head>
<style type="text/css">
.inline {
background-color: #f7f7f7;
border:solid 1px #B0B0B0;
}
.error {
font-weight: bold;
color: #FF0000;
}
.warning {
font-weight: bold;
}
.message {
font-style: italic;
}
.source, .output, .warning, .error, .message {
padding: 0 1em;
border:solid 1px #F7F7F7;
}
.source {
background-color: #f5f5f5;
}
.left {
text-align: left;
}
.right {
text-align: right;
}
.center {
text-align: center;
}
.hl.num {
color: #AF0F91;
}
.hl.sng {
color: #317ECC;
}
.hl.com {
color: #AD95AF;
font-style: italic;
}
.hl.opt {
color: #000000;
}
.hl.def {
color: #585858;
}
.hl.kwa {
color: #295F94;
font-weight: bold;
}
.hl.kwb {
color: #B05A65;
}
.hl.kwc {
color: #55aa55;
}
.hl.kwd {
color: #BC5A65;
font-weight: bold;
}
</style>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
body,td{width:800px;margin:auto;}
</style>
<title>An R HTML vignette with knitr</title>
</head>
<body>
<p>This is an R HTML vignette. The file extension is <code>*.Rhtml</code>, and
it has to include a special comment to tell R that this file needs to be
compiled by <strong>knitr</strong>:</p>
<pre>&lt;!--
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{The Title of Your Vignette}
--&gt;
</pre>
<p>Now you can write R code chunks:</p>
<div class="chunk" id="cars-demo"><div class="rcode"><div class="source"><pre class="knitr r"><span class="hl kwd">summary</span><span class="hl def">(cars)</span>
</pre></div>
<div class="output"><pre class="knitr r">## speed dist
## Min. : 4.0 Min. : 2
## 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4 Mean : 43
## 3rd Qu.:19.0 3rd Qu.: 56
## Max. :25.0 Max. :120
</pre></div>
<div class="source"><pre class="knitr r"><span class="hl def">fit</span><span class="hl kwb">=</span><span class="hl kwd">lm</span><span class="hl def">(dist</span><span class="hl opt">~</span><span class="hl def">speed,</span> <span class="hl kwc">data</span><span class="hl def">=cars)</span>
<span class="hl kwd">summary</span><span class="hl def">(fit)</span>
</pre></div>
<div class="output"><pre class="knitr r">##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.07 -9.53 -2.27 9.21 43.20
##
## Coefficients:
## Estimate Std. Error t value Pr(&gt;|t|)
## (Intercept) -17.579 6.758 -2.60 0.012 *
## speed 3.932 0.416 9.46 1.5e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.4 on 48 degrees of freedom
## Multiple R-squared: 0.651, Adjusted R-squared: 0.644
## F-statistic: 89.6 on 1 and 48 DF, p-value: 1.49e-12
</pre></div>
</div></div>
<p>You can also embed plots, for example:</p>
<div class="chunk" id="cars-plot"><div class="rcode"><div class="source"><pre class="knitr r"><span class="hl kwd">par</span><span class="hl def">(</span><span class="hl kwc">mar</span><span class="hl def">=</span><span class="hl kwd">c</span><span class="hl def">(</span><span class="hl num">4</span><span class="hl def">,</span><span class="hl num">4</span><span class="hl def">,</span><span class="hl num">.1</span><span class="hl def">,</span><span class="hl num">.1</span><span class="hl def">))</span>
<span class="hl kwd">plot</span><span class="hl def">(cars,</span> <span class="hl kwc">pch</span><span class="hl def">=</span><span class="hl num">19</span><span class="hl def">)</span>
</pre></div>
</div><div class="rimage center"><img src="" alt="plot of chunk cars-plot" class="plot" /></div></div>
<p>For package vignettes, you need to encode images in base64 strings using the
<code>knitr::image_uri()</code> function so that the image files are no longer
needed after the vignette is compiled. For example, you can add this chunk in
the beginning of a vignette:</p>
<div class="chunk" id="setup"><div class="rcode"><div class="source"><pre class="knitr r"><span class="hl kwd">library</span><span class="hl def">(knitr)</span>
<span class="hl com"># to base64 encode images</span>
<span class="hl def">opts_knit</span><span class="hl opt">$</span><span class="hl kwd">set</span><span class="hl def">(</span><span class="hl kwc">upload.fun</span> <span class="hl def">= image_uri)</span>
</pre></div>
</div></div>
</body>
</html>