102 lines
3.0 KiB
R
102 lines
3.0 KiB
R
#!/usr/bin/env r
|
|
##
|
|
## This example goes back to the following StackOverflow questions:
|
|
## http://stackoverflow.com/questions/7153586/can-i-vectorize-a-calculation-which-depends-on-previous-elements
|
|
## and provides a nice example of how to accelerate path-dependent
|
|
## loops which are harder to vectorise. It lead to the following blog
|
|
## post:
|
|
## http://dirk.eddelbuettel.com/blog/2011/08/23#rcpp_for_path_dependent_loops
|
|
##
|
|
## Thanks to Josh Ulrich for provided a first nice (R-based) answer on
|
|
## StackOverflow and for also catching a small oversight in my posted answer.
|
|
##
|
|
## Dirk Eddelbuettel, 23 Aug 2011
|
|
##
|
|
## Copyrighted but of course GPL'ed
|
|
|
|
|
|
library(inline)
|
|
library(rbenchmark)
|
|
library(compiler)
|
|
|
|
fun1 <- function(z) {
|
|
for(i in 2:NROW(z)) {
|
|
z[i] <- ifelse(z[i-1]==1, 1, 0)
|
|
}
|
|
z
|
|
}
|
|
fun1c <- cmpfun(fun1)
|
|
|
|
|
|
fun2 <- function(z) {
|
|
for(i in 2:NROW(z)) {
|
|
z[i] <- if(z[i-1]==1) 1 else 0
|
|
}
|
|
z
|
|
}
|
|
fun2c <- cmpfun(fun2)
|
|
|
|
|
|
funRcpp <- cxxfunction(signature(zs="numeric"), plugin="Rcpp", body="
|
|
Rcpp::NumericVector z = Rcpp::NumericVector(zs);
|
|
int n = z.size();
|
|
for (int i=1; i<n; i++) {
|
|
z[i] = (z[i-1]==1.0 ? 1.0 : 0.0);
|
|
}
|
|
return(z);
|
|
")
|
|
|
|
|
|
z <- rep(c(1,1,0,0,0,0), 100)
|
|
## test all others against fun1 and make sure all are identical
|
|
all(sapply(list(fun2(z),fun1c(z),fun2c(z),funRcpp(z)), identical, fun1(z)))
|
|
|
|
res <- benchmark(fun1(z), fun2(z),
|
|
fun1c(z), fun2c(z),
|
|
funRcpp(z),
|
|
columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"),
|
|
order="relative",
|
|
replications=1000)
|
|
print(res)
|
|
|
|
z <- c(1,1,0,0,0,0)
|
|
res2 <- benchmark(fun1(z), fun2(z),
|
|
fun1c(z), fun2c(z),
|
|
funRcpp(z),
|
|
columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"),
|
|
order="relative",
|
|
replications=10000)
|
|
print(res2)
|
|
|
|
|
|
if (FALSE) { # quick test to see if Int vectors are faster: appears not
|
|
funRcppI <- cxxfunction(signature(zs="integer"), plugin="Rcpp", body="
|
|
Rcpp::IntegerVector z = Rcpp::IntegerVector(zs);
|
|
int n = z.size();
|
|
for (int i=1; i<n; i++) {
|
|
z[i] = (z[i-1]==1.0 ? 1.0 : 0.0);
|
|
}
|
|
return(z);
|
|
")
|
|
|
|
z <- rep(c(1L,1L,0L,0L,0L,0L), 100)
|
|
identical(fun1(z),fun2(z),fun1c(z),fun2c(z),funRcppI(z))
|
|
|
|
res3 <- benchmark(fun1(z), fun2(z),
|
|
fun1c(z), fun2c(z),
|
|
funRcppI(z),
|
|
columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"),
|
|
order="relative",
|
|
replications=1000)
|
|
print(res3)
|
|
|
|
z <- c(1L,1L,0L,0L,0L,0L)
|
|
res4 <- benchmark(fun1(z), fun2(z),
|
|
fun1c(z), fun2c(z),
|
|
funRcppI(z),
|
|
columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"),
|
|
order="relative",
|
|
replications=10000)
|
|
print(res4)
|
|
}
|