761 lines
28 KiB
R
761 lines
28 KiB
R
#### Matrix Factorizations --- of all kinds
|
||
|
||
## for R_DEFAULT_PACKAGES=NULL :
|
||
library(stats)
|
||
library(utils)
|
||
|
||
library(Matrix)
|
||
source(system.file("test-tools.R", package = "Matrix"))# identical3() etc
|
||
options(warn = 0)
|
||
is64bit <- .Machine$sizeof.pointer == 8
|
||
cat("doExtras:", doExtras,"; is64bit:", is64bit, "\n")
|
||
|
||
### "sparseQR" : Check consistency of methods
|
||
## --------
|
||
data(KNex, package = "Matrix")
|
||
mm <- KNex$mm
|
||
y <- KNex$y
|
||
stopifnot(is((Y <- Matrix(y)), "dgeMatrix"))
|
||
md <- as(mm, "matrix") # dense
|
||
|
||
(cS <- system.time(Sq <- qr(mm))) # 0.009
|
||
(cD <- system.time(Dq <- qr(md))) # 0.499 (lynne, 2014 f); 1.04 lynne 2019 ?????
|
||
cD[1] / cS[1] # dense is much ( ~ 100--170 times) slower
|
||
|
||
## chkQR() in ../inst/test-tools-1.R ;
|
||
|
||
if(doExtras) { ## ~ 20 sec {"large" example} + 2x qr.R() warnings
|
||
cat("chkQR( <KNex> ) .. takes time .. ")
|
||
system.time(chkQR(mm, y=y, a.qr = Sq, verbose=TRUE))
|
||
system.time(chkQR(md, y=y, a.qr = Dq, verbose=TRUE))
|
||
cat(" done: [Ok]\n")
|
||
}
|
||
|
||
## consistency of results dense and sparse
|
||
## chk.qr.D.S() and checkQR.DS.both() >>> ../inst/test-tools-Matrix.R
|
||
chk.qr.D.S(Dq, Sq, y, Y)
|
||
|
||
## Another small example with pivoting (and column name "mess"):
|
||
suppressWarnings(RNGversion("3.5.0")); set.seed(1)
|
||
X <- rsparsematrix(9,5, 1/4, dimnames=list(paste0("r", 1:9), LETTERS[1:5]))
|
||
qX <- qr(X); qd <- qr(as(X, "matrix"))
|
||
## are the same (now, *including* names):
|
||
assert.EQ(print(qr.coef(qX, 1:9)), qr.coef(qd, 1:9), tol=1e-14)
|
||
chk.qr.D.S(d. = qd, s. = qX, y = 1:9)
|
||
|
||
|
||
|
||
## rank deficient QR cases: ---------------
|
||
|
||
## From Simon (15 Jul 2009) + dimnames (11 May 2015)
|
||
set.seed(10)
|
||
a <- matrix(round(10 * runif(90)), 10,9, dimnames =
|
||
list(LETTERS[1:10], paste0("c", 1:9)))
|
||
a[a < 7.5] <- 0
|
||
(A <- Matrix(a))# first column = all zeros
|
||
qD <- chkQR(a, giveRE=TRUE) ## using base qr
|
||
qS <- chkQR(A, giveRE=TRUE) ## using Matrix "sparse qr" -- "structurally rank deficient!
|
||
validObject(qS)# with the validity now (2012-11-18) -- ok, also for "bad" case
|
||
## Here, have illegal access Up[-1] in ../src/cs.c
|
||
try( ## After patch (2016-10-04 - *NOT* committed), this fails
|
||
## definitely "fails" (with good singularity message) after c3194 (cs.c):
|
||
chk.qr.D.S(qD, qS, y = 10 + 1:nrow(A), force=TRUE)# 6 warnings: "structurally rank deficient"
|
||
)
|
||
try( ## NOTE: *Both* checks currently fail here:
|
||
chkQR(A, Qinv.chk=TRUE, QtQ.chk=TRUE)
|
||
)
|
||
|
||
|
||
## Larger Scale random testing
|
||
oo <- options(Matrix.quiet.qr.R = TRUE, Matrix.verbose = TRUE, nwarnings = 1e4)
|
||
set.seed(101)
|
||
|
||
quiet <- doExtras
|
||
for(N in 1:(if(doExtras) 1008 else 24)) {
|
||
A <- rsparsematrix(8,5, nnz = rpois(1, lambda=16))
|
||
cat(sprintf(if(quiet) "%d " else "%4d -", N)); if(quiet && N %% 50 == 0) cat("\n")
|
||
checkQR.DS.both(A, Qinv.chk= NA, QtQ.chk=NA, quiet=quiet,
|
||
## --- => FALSE if struct. rank deficient
|
||
giveRE = FALSE, tol = 1e-12)
|
||
## with doExtras = TRUE, 64bit (F34, R 4.3.0-dev. 2022-05): seen 8.188e-13
|
||
}
|
||
summary(warnings())
|
||
|
||
## Look at single "hard" cases: --------------------------------------
|
||
|
||
## This is *REALLY* nice and small :
|
||
A0 <- new("dgCMatrix", Dim = 4:3, i = c(0:3, 3L), p = c(0L, 3:5), x = rep(1,5))
|
||
A0
|
||
checkQR.DS.both(A0, Qinv.chk = FALSE, QtQ.chk=FALSE)
|
||
## ----- *both* still needed :
|
||
try( checkQR.DS.both(A0, TRUE, FALSE) )
|
||
try( checkQR.DS.both(A0, FALSE, TRUE) )
|
||
|
||
## and the same when dropping the first row { --> 3 x 3 }:
|
||
A1 <- A0[-1 ,]
|
||
checkQR.DS.both(A1, Qinv.chk = FALSE, QtQ.chk=FALSE)
|
||
## ----- *both* still needed :
|
||
try( checkQR.DS.both(A1, TRUE, FALSE) )
|
||
try( checkQR.DS.both(A1, FALSE, TRUE) )
|
||
|
||
|
||
qa <- qr(as(A0,"matrix"))
|
||
qA <- qr(A0) # -> message: ".. Matrix structurally rank deficient"
|
||
|
||
drop0(crossprod( Qd <- qr.Q(qa) ), 1e-15) # perfect = diag( 3 )
|
||
drop0(crossprod( Qs <- qr.Q(qA) ), 1e-15) # R[3,3] == 0 -- OOPS!
|
||
## OTOH, qr.R() is fine, as checked in the checkQR.DS.both(A0, *) above
|
||
|
||
|
||
## zero-row *and* zero-column :
|
||
(A2 <- new("dgCMatrix", i = c(0L, 1L, 4L, 7L, 5L, 2L, 4L)
|
||
, p = c(0L, 3L, 4L, 4L, 5L, 7L)
|
||
, Dim = c(8L, 5L)
|
||
, x = c(0.92, 1.06, -1.74, 0.74, 0.19, -0.63, 0.68)))
|
||
checkQR.DS.both(A2, Qinv.chk = FALSE, QtQ.chk=FALSE)
|
||
## ----- *both* still needed :
|
||
try( checkQR.DS.both(A2, TRUE, FALSE) )
|
||
try( checkQR.DS.both(A2, FALSE, TRUE) )
|
||
|
||
|
||
## Case of *NO* zero-row or zero-column:
|
||
(A3 <- new("dgCMatrix", Dim = 6:5
|
||
, i = c(0L, 2L, 4L, 0L, 1L, 5L, 1L, 3L, 0L)
|
||
, p = c(0L, 1L, 3L, 6L, 8L, 9L)
|
||
, x = c(40, -54, -157, -28, 75, 166, 134, 3, -152)))
|
||
checkQR.DS.both(A3, Qinv.chk = FALSE, QtQ.chk=FALSE)
|
||
## ----- *both* still needed :
|
||
try( checkQR.DS.both(A3, TRUE, FALSE) )
|
||
try( checkQR.DS.both(A3, FALSE, TRUE) )
|
||
|
||
|
||
|
||
(A4 <- new("dgCMatrix", Dim = c(7L, 5L)
|
||
, i = c(1:2, 4L, 6L, 1L, 5L, 0:3, 0L, 2:4)
|
||
, p = c(0L, 4L, 6L, 10L, 10L, 14L)
|
||
, x = c(9, -8, 1, -9, 1, 10, -1, -2, 6, 14, 10, 2, 12, -9)))
|
||
checkQR.DS.both(A4, Qinv.chk = FALSE, QtQ.chk=FALSE)
|
||
## ----- *both* still needed :
|
||
try( checkQR.DS.both(A4, TRUE, FALSE) )
|
||
try( checkQR.DS.both(A4, FALSE, TRUE) )
|
||
|
||
(A5 <- new("dgCMatrix", Dim = c(4L, 4L)
|
||
, i = c(2L, 2L, 0:1, 0L, 2:3), p = c(0:2, 4L, 7L)
|
||
, x = c(48, 242, 88, 18, -167, -179, 18)))
|
||
checkQR.DS.both(A5, Qinv.chk = FALSE, QtQ.chk=FALSE)
|
||
## ----- *both* still needed :
|
||
try( checkQR.DS.both(A5, TRUE, FALSE) )
|
||
try( checkQR.DS.both(A5, FALSE, TRUE) )
|
||
|
||
|
||
quiet <- doExtras
|
||
for(N in 1:(if(doExtras) 2^12 else 128)) {
|
||
A <- round(100*rsparsematrix(5,3, nnz = min(15,rpois(1, lambda=10))))
|
||
if(any(apply(A, 2, function(x) all(x == 0)))) ## "column of all 0"
|
||
next
|
||
cat(sprintf(if(quiet) "%d " else "%4d -", N)); if(quiet && N %% 50 == 0) cat("\n")
|
||
checkQR.DS.both(A, Qinv.chk=NA, giveRE=FALSE, tol = 1e-12, quiet = quiet)
|
||
## --- => FALSE if struct. rank deficient
|
||
}
|
||
|
||
summary(warnings())
|
||
|
||
|
||
options(oo)
|
||
|
||
|
||
|
||
### "denseLU"
|
||
|
||
## Testing expansions of factorizations {was ./expand.R, then in simple.R }
|
||
## new: [m x n] where m and n may differ
|
||
x. <- c(2^(0:5),9:1,-3:8, round(sqrt(0:16)))
|
||
set.seed(1)
|
||
for(nnn in 1:100) {
|
||
y <- sample(x., replace=TRUE)
|
||
m <- sample(2:6, 1)
|
||
n <- sample(2:7, 1)
|
||
x <- matrix(seq_len(m*n), m,n)
|
||
lux <- lu(x)# occasionally a warning about exact singularity
|
||
xx <- with(expand(lux), (P %*% L %*% U))
|
||
print(dim(xx))
|
||
assert.EQ.mat(xx, x, tol = 16*.Machine$double.eps)
|
||
}
|
||
|
||
### "sparseLU"
|
||
por1 <- readMM(system.file("external/pores_1.mtx", package = "Matrix"))
|
||
lu1 <- lu(por1)
|
||
pm <- as(por1, "CsparseMatrix")
|
||
(pmLU <- lu(pm)) # -> show(<MatrixFactorization>)
|
||
xp <- expand(pmLU)
|
||
## permute rows and columns of original matrix
|
||
ppm <- pm[pmLU@p + 1:1, pmLU@q + 1:1]
|
||
Ppm <- pmLU@L %*% pmLU@U
|
||
## identical only as long as we don't keep the original class info:
|
||
stopifnot(identical3(lu1, pmLU, pm@factors$sparseLU),# TODO === por1@factors$LU
|
||
identical(ppm, with(xp, P %*% pm %*% t(Q))),
|
||
sapply(xp, is, class2="Matrix"))
|
||
|
||
Ipm <- solve(pm, sparse=FALSE)
|
||
Spm <- solve(pm, sparse=TRUE) # is not sparse at all, here
|
||
assert.EQ.Mat(Ipm, Spm, giveRE=TRUE, tol = 1e-13)# seen 7.36e-15 only on 32-bit
|
||
stopifnot(abs(as.vector(solve(Diagonal(30, x=10) %*% pm) / Ipm) - 1/10) < 1e-7,
|
||
abs(as.vector(solve(rep.int(4, 30) * pm) / Ipm) - 1/ 4) < 1e-7)
|
||
|
||
## these two should be the same, and `are' in some ways:
|
||
assert.EQ.mat(ppm, as(Ppm, "matrix"), tol = 1e-14, giveRE=TRUE)
|
||
## *however*
|
||
length(ppm@x)# 180
|
||
length(Ppm@x)# 317 !
|
||
table(Ppm@x == 0)# (194, 123) - has 123 "zero" and 14 ``almost zero" entries
|
||
|
||
##-- determinant() and det() --- working via LU ---
|
||
m <- matrix(c(0, NA, 0, NA, NA, 0, 0, 0, 1), 3,3)
|
||
m0 <- rbind(0,cbind(0,m))
|
||
M <- as(m,"Matrix"); M ## "dsCMatrix" ...
|
||
M0 <- rbind(0, cbind(0, M))
|
||
dM <- as(M, "denseMatrix")
|
||
dM0 <- as(M0,"denseMatrix")
|
||
try( lum <- lu(M) )# Err: "near-singular A"
|
||
(lum <- lu(M, errSing=FALSE))# NA --- *BUT* it is not stored in @factors
|
||
(lum0 <- lu(M0, errSing=FALSE))# NA --- and it is stored in M0@factors[["LU"]]
|
||
## "FIXME" - TODO: Consider
|
||
replNA <- function(x, value) { x[is.na(x)] <- value ; x }
|
||
(EL.1 <- expand(lu.1 <- lu(M.1 <- replNA(M, -10))))
|
||
## so it's quite clear how lu() of the *singular* matrix M should work
|
||
## but it's not supported by the C code in ../src/cs.c which errors out
|
||
stopifnot(all.equal(M.1, with(EL.1, t(P) %*% L %*% U %*% Q)),
|
||
is.na(det(M)), is.na(det(dM)),
|
||
is.na(det(M0)), is.na(det(dM0)) )
|
||
|
||
###________ Cholesky() ________
|
||
|
||
##-------- LDL' ---- small exact examples
|
||
|
||
set.seed(1)
|
||
for(n in c(5:12)) {
|
||
cat("\nn = ",n,"\n-------\n")
|
||
rr <- mkLDL(n)
|
||
## -------- from 'test-tools.R'
|
||
stopifnot(all(with(rr, A ==
|
||
as(L %*% D %*% t(L), "symmetricMatrix"))),
|
||
all(with(rr, A == tcrossprod(L %*% sqrt(D)))))
|
||
d <- rr$d.half
|
||
A <- rr$A
|
||
.A <- as(A, "TsparseMatrix") # 'factors' slot is retained => do chol() _after_ coercion
|
||
R <- chol(A)
|
||
assert.EQ.Mat(R, chol(.A)) # gave infinite recursion
|
||
print(d. <- diag(R))
|
||
D. <- Diagonal(x= d.^2)
|
||
L. <- t(R) %*% Diagonal(x = 1/d.)
|
||
stopifnot(all.equal(as.matrix(D.), as.matrix(rr$ D)),
|
||
all.equal(as.matrix(L.), as.matrix(rr$ L)))
|
||
##
|
||
CAp <- Cholesky(A)# perm=TRUE --> Permutation:
|
||
validObject(CAp)
|
||
p <- CAp@perm + 1L
|
||
P <- as(p, "pMatrix")
|
||
## the inverse permutation:
|
||
invP <- solve(P)@perm
|
||
lDet <- sum(2* log(d))# the "true" value
|
||
ldetp <- .diag.dsC(Chx = CAp, res.kind = "sumLog")
|
||
ldetp. <- sum(log(.diag.dsC(Chx = CAp, res.kind = "diag") ))
|
||
##
|
||
CA <- Cholesky(A,perm=FALSE)
|
||
validObject(CA)
|
||
ldet <- .diag.dsC(Chx = CA, res.kind = "sumLog")
|
||
## not printing CAp : ends up non-integer for n >= 11
|
||
mCAp <- as(CAp, "CsparseMatrix")
|
||
print(mCA <- drop0(as(CA, "CsparseMatrix")))
|
||
stopifnot(identical(A[p,p], as(P %*% A %*% t(P),
|
||
"symmetricMatrix")),
|
||
relErr(d.^2, .diag.dsC(Chx= CA, res.kind="diag")) < 1e-14,
|
||
relErr(A[p,p], tcrossprod(mCAp)) < 1e-14)
|
||
if(FALSE)
|
||
rbind(lDet,ldet, ldetp, ldetp.)
|
||
## ==> Empirically, I see lDet = ldet != ldetp == ldetp.
|
||
## if(rr$rcond.A < ...) warning("condition number of A ..." ## <- TODO
|
||
cat(1,""); assert.EQ.(lDet, ldet, tol = 1e-14)
|
||
cat(2,""); assert.EQ.(ldetp, ldetp., tol = 1e-14)
|
||
cat(3,""); assert.EQ.(lDet, ldetp, tol = n^2* 1e-7)# extreme: have seen 0.0011045 !!
|
||
}## for()
|
||
|
||
mkCholhash <- function(r.all) {
|
||
## r.all %*% (2^(2:0)), but only those that do not have NA / "?" :
|
||
stopifnot(is.character(rn <- rownames(r.all)),
|
||
is.matrix(r.all), is.logical(r.all))
|
||
c.rn <- vapply(rn, function(ch) strsplit(ch, " ")[[1]], character(3))
|
||
## Now
|
||
h1 <- function(i) {
|
||
ok <- rep.int(TRUE, 3L)
|
||
if(c.rn[3L, i] == "?")
|
||
ok[2:3] <- FALSE # no supernodal LDL' factorization !!
|
||
r.all[i, ok] %*% 2^((2:0)[ok])
|
||
}
|
||
vapply(seq_len(nrow(r.all)), h1, numeric(1))
|
||
}
|
||
|
||
set.seed(17)
|
||
(rr <- mkLDL(4))
|
||
(CA <- Cholesky(rr$A))
|
||
validObject(CA)
|
||
stopifnot(all.equal(determinant(rr$A) -> detA,
|
||
determinant(as(rr$A, "matrix"))),
|
||
is.all.equal3(c(detA$modulus), log(det(rr$D)), sum(log(rr$D@x))))
|
||
A12 <- mkLDL(12, 1/10)
|
||
(r12 <- allCholesky(A12$A))[-1]
|
||
aCh.hash <- mkCholhash(r12$r.all)
|
||
if(requireNamespace("sfsmisc"))
|
||
split(rownames(r12$r.all), sfsmisc::Duplicated(aCh.hash))
|
||
|
||
## TODO: find cases for both choices when we leave it to CHOLMOD to choose
|
||
for(n in 1:50) { ## used to seg.fault at n = 10 !
|
||
mkA <- mkLDL(1+rpois(1, 30), 1/10, rcond = FALSE, condest = FALSE)
|
||
cat(sprintf("n = %3d, LDL-dim = %d x %d ", n, nrow(mkA$A), ncol(mkA$A)))
|
||
r <- allCholesky(mkA$A, silentTry=TRUE)
|
||
## Compare .. apart from the NAs that happen from (perm=FALSE, super=TRUE)
|
||
iNA <- apply(is.na(r$r.all), 1, any)
|
||
cat(sprintf(" -> %3s NAs\n", if(any(iNA)) format(sum(iNA)) else "no"))
|
||
stopifnot(aCh.hash[!iNA] == mkCholhash(r$r.all[!iNA,]))
|
||
## cat("--------\n")
|
||
}
|
||
|
||
|
||
## This is a relatively small "critical example" :
|
||
A. <-
|
||
new("dsCMatrix", Dim = c(25L, 25L), uplo = "U"
|
||
, i = as.integer(
|
||
c(0, 1, 2, 3, 4, 2, 5, 6, 0, 8, 8, 9, 3, 4, 10, 11, 6, 12, 13, 4,
|
||
10, 14, 15, 1, 2, 5, 16, 17, 0, 7, 8, 18, 9, 19, 10, 11, 16, 20,
|
||
0, 6, 7, 16, 17, 18, 20, 21, 6, 9, 12, 14, 19, 21, 22, 9, 11, 19,
|
||
20, 22, 23, 1, 16, 24))
|
||
##
|
||
, p = c(0:6, 8:10, 12L, 15:16, 18:19, 22:23, 27:28, 32L, 34L, 38L, 46L, 53L, 59L, 62L)
|
||
##
|
||
, x = c(1, 1, 1, 1, 2, 100, 2, 40, 1, 2, 100, 6700, 100, 100, 13200,
|
||
1, 50, 4100, 1, 5, 400, 20, 1, 40, 100, 5600, 9100, 5000, 5,
|
||
100, 100, 5900, 100, 6200, 30, 20, 9, 2800, 1, 100, 8, 10, 8000,
|
||
100, 600, 23900, 30, 100, 2800, 50, 5000, 3100, 15100, 100, 10,
|
||
5600, 800, 4500, 5500, 7, 600, 18200))
|
||
validObject(A.)
|
||
## A1: the same pattern as A. just simply filled with '1's :
|
||
A1 <- A.; A1@x[] <- 1; A1@factors <- list()
|
||
A1.8 <- A1; diag(A1.8) <- 8
|
||
##
|
||
nT. <- as(AT <- as(A., "TsparseMatrix"),"nMatrix")
|
||
stopifnot(all(nT.@i <= nT.@j),
|
||
identical(qr(A1.8), qr(as(A1.8, "generalMatrix"))))
|
||
|
||
CA <- Cholesky(A. + Diagonal(x = rowSums(abs(A.)) + 1))
|
||
validObject(CA)
|
||
stopifnotValid(CAinv <- solve(CA), "dsCMatrix")
|
||
MA <- as(CA, "CsparseMatrix") # with a confusing warning -- FIXME!
|
||
stopifnotValid(MAinv <- solve(MA), "dtCMatrix")
|
||
## comparing MAinv with some solve(CA, system="...") .. *not* trivial? - TODO
|
||
##
|
||
CAinv2 <- solve(CA, Diagonal(nrow(A.)))
|
||
CAinv2 <- as(CAinv2, "symmetricMatrix")
|
||
stopifnot(identical(CAinv, CAinv2))
|
||
|
||
## FINALLY fix "TODO": (not implemented *symbolic* factorization of nMatrix)
|
||
try( tc <- Cholesky(nT.) )
|
||
|
||
for(p in c(FALSE,TRUE))
|
||
for(L in c(FALSE,TRUE))
|
||
for(s in c(FALSE,TRUE, NA)) {
|
||
cat(sprintf("p,L,S = (%2d,%2d,%2d): ", p,L,s))
|
||
r <- tryCatch(Cholesky(A., perm=p, LDL=L, super=s),
|
||
error = function(e)e)
|
||
cat(if(inherits(r, "error")) " *** E ***" else
|
||
sprintf("%3d", r@type),"\n", sep="")
|
||
}
|
||
str(A., max.level=3) ## look at the 'factors'
|
||
|
||
facs <- A.@factors
|
||
names(facs) <- sub("Cholesky$", "", names(facs))
|
||
facs <- facs[order(names(facs))]
|
||
|
||
sapply(facs, class)
|
||
str(lapply(facs, slot, "type"))
|
||
## super = TRUE currently always entails LDL=FALSE :
|
||
## hence isLDL is TRUE for ("D" and not "S"):
|
||
sapply(facs, isLDL)
|
||
|
||
chkCholesky <- function(chmf, A) {
|
||
stopifnot(is(chmf, "CHMfactor"),
|
||
validObject(chmf),
|
||
is(A, "Matrix"), isSymmetric(A))
|
||
if(!is(A, "dsCMatrix"))
|
||
A <- as(as(as(A, "CsparseMatrix"), "symmetricMatrix", "dMatrix"))
|
||
L <- drop0(zapsmall(L. <- as(chmf, "CsparseMatrix")))
|
||
cat("no. nonzeros in L {before / after drop0(zapsmall(.))}: ",
|
||
c(nnzero(L.), nnzero(L)), "\n") ## 112, 95
|
||
ecc <- expand(chmf)
|
||
A... <- with(ecc, crossprod(crossprod(L,P)))
|
||
stopifnot(all.equal(L., ecc$L, tolerance = 1e-14),
|
||
all.equal(A, A..., tolerance = 1e-14))
|
||
invisible(ecc)
|
||
}
|
||
|
||
c1.8 <- try(Cholesky(A1.8, super = TRUE))# works "always", interestingly ...
|
||
chkCholesky(c1.8, A1.8)
|
||
|
||
|
||
|
||
## --- now a "large" (712 x 712) real data example ---------------------------
|
||
|
||
data(KNex, package = "Matrix")
|
||
mtm <- with(KNex, crossprod(mm))
|
||
ld.3 <- determinant(Cholesky(mtm, perm = TRUE), sqrt = FALSE)
|
||
stopifnot(identical(names(mtm@factors),
|
||
"sPDCholesky"))
|
||
ld.4 <- determinant(Cholesky(mtm, perm = FALSE), sqrt = FALSE)
|
||
stopifnot(identical(names(mtm@factors),
|
||
c("sPDCholesky", "spDCholesky")))
|
||
c2 <- Cholesky(mtm, super = TRUE)
|
||
validObject(c2)
|
||
stopifnot(identical(names(mtm@factors),
|
||
c("sPDCholesky", "spDCholesky", "SPdCholesky")))
|
||
|
||
r <- allCholesky(mtm)
|
||
r[-1]
|
||
|
||
## is now taken from cache
|
||
c1 <- Cholesky(mtm)
|
||
|
||
bv <- 1:nrow(mtm) # even integer
|
||
b <- matrix(bv)
|
||
## solve(c2, b) by default solves Ax = b, where A = c2'c2 !
|
||
x <- solve(c2,b)
|
||
stopifnot(identical3(drop(x), solve(c2, bv), drop(solve(c2, b, system = "A"))),
|
||
all.equal(x, solve(mtm, b)))
|
||
for(sys in c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt")) {
|
||
x <- solve(c2, b, system = sys)
|
||
cat(sys,":\n"); print(head(x))
|
||
stopifnot(dim(x) == c(712, 1),
|
||
identical(drop(x), solve(c2, bv, system = sys)))
|
||
}
|
||
|
||
## log(|LL'|) - check if super = TRUE and simplicial give same determinant
|
||
(ld.1 <- determinant(mtm))
|
||
if(FALSE) {
|
||
## MJ: CHMfactor_ldetL2 is unused outside of these tests, so we no longer
|
||
## have it in the namespace { old definition is in ../src/CHMfactor.c }
|
||
ld1 <- .Call("CHMfactor_ldetL2", c1)
|
||
ld2 <- .Call("CHMfactor_ldetL2", c2)
|
||
stopifnot(all.equal(ld1, ld2),
|
||
all.equal(ld1, as.vector(ld.1$modulus), tolerance = 1e-14),
|
||
all.equal(ld1, as.vector(ld.3$modulus), tolerance = 1e-14),
|
||
all.equal(ld1, as.vector(ld.4$modulus), tolerance = 1e-14))
|
||
} else {
|
||
stopifnot(all.equal(as.vector(ld.1$modulus), as.vector(ld.3$modulus),
|
||
tolerance = 1e-14),
|
||
all.equal(as.vector(ld.1$modulus), as.vector(ld.4$modulus),
|
||
tolerance = 1e-14))
|
||
}
|
||
|
||
## MJ: ldet[123].dsC() are unused outside of these tests, so we no longer
|
||
## have them in the namespace { old definitions are in ../R/determinant.R }
|
||
if(FALSE) {
|
||
## Some timing measurements
|
||
mtm <- with(KNex, crossprod(mm))
|
||
I <- .symDiagonal(n=nrow(mtm))
|
||
set.seed(101); r <- runif(100)
|
||
|
||
system.time(D1 <- sapply(r, function(rho) Matrix:::ldet1.dsC(mtm + (1/rho) * I)))
|
||
## 0.842 on fast cmath-5
|
||
system.time(D2 <- sapply(r, function(rho) Matrix:::ldet2.dsC(mtm + (1/rho) * I)))
|
||
## 0.819
|
||
system.time(D3 <- sapply(r, function(rho) Matrix:::ldet3.dsC(mtm + (1/rho) * I)))
|
||
## 0.810
|
||
stopifnot(is.all.equal3(D1,D2,D3, tol = 1e-13))
|
||
}
|
||
|
||
## Updating LL' should remain LL' and not become LDL' :
|
||
cholCheck <- function(Ut, tol = 1e-12, super = FALSE, LDL = !super) {
|
||
L <- Cholesky(UtU <- tcrossprod(Ut), super=super, LDL=LDL, Imult = 1)
|
||
L1 <- update(L, UtU, mult = 1)
|
||
L2 <- update(L, Ut, mult = 1)
|
||
stopifnot(is.all.equal3(L, L1, L2, tol = tol),
|
||
all.equal(update(L, UtU, mult = pi),
|
||
update(L, Ut, mult = pi), tolerance = tol)
|
||
)
|
||
}
|
||
|
||
## Inspired by
|
||
## data(Dyestuff, package = "lme4")
|
||
## Zt <- as(Dyestuff$Batch, "sparseMatrix")
|
||
Zt <- new("dgCMatrix", Dim = c(6L, 30L), x = 2*1:30,
|
||
i = rep(0:5, each=5),
|
||
p = 0:30, Dimnames = list(LETTERS[1:6], NULL))
|
||
cholCheck(0.78 * Zt, tol=1e-14)
|
||
|
||
oo <- options(Matrix.quiet.qr.R = TRUE, warn = 2)# no warnings allowed
|
||
qrZ <- qr(t(Zt))
|
||
Rz <- qr.R(qrZ)
|
||
stopifnot(exprs = {
|
||
inherits(qrZ, "sparseQR")
|
||
inherits(Rz, "sparseMatrix")
|
||
isTriangular(Rz)
|
||
isDiagonal(Rz) # even though formally a "dtCMatrix"
|
||
qr2rankMatrix(qrZ, do.warn=FALSE) == 6
|
||
})
|
||
options(oo)
|
||
|
||
## problematic rank deficient rankMatrix() case -- only seen in large cases ??
|
||
## MJ: NA in diag(<sparseQR>@R) not seen with Apple Clang 14.0.3
|
||
Z. <- readRDS(system.file("external", "Z_NA_rnk.rds", package="Matrix"))
|
||
(rnkZ. <- rankMatrix(Z., method = "qr")) # gave errors; now warns typically, but not on aarm64 (M1)
|
||
qrZ. <- qr(Z.)
|
||
options(warn=1)
|
||
rnk2 <- qr2rankMatrix(qrZ.) # warning ".. only 684 out of 822 finite diag(R) entries"
|
||
oo <- options(warn=2)# no warnings allowed from here
|
||
di.NA <- anyNA(diag(qrZ.@R))
|
||
stopifnot(is(qrZ, "sparseQR"),
|
||
identical(is.na(rnkZ.), di.NA),
|
||
identical(is.na(rnk2), di.NA))
|
||
|
||
## The above bug fix was partly wrongly extended to dense matrices for "qr.R":
|
||
x <- cbind(1, rep(0:9, 18))
|
||
qr.R(qr(x)) # one negative diagonal
|
||
qr.R(qr(x, LAPACK=TRUE)) # two negative diagonals
|
||
chkRnk <- function(x, rnk) {
|
||
stopifnot(exprs = {
|
||
rankMatrix(x) == rnk
|
||
rankMatrix(x, method="maybeGrad") == rnk ## but "useGrad" is not !
|
||
rankMatrix(x, method="qrLINPACK") == rnk
|
||
rankMatrix(x, method="qr.R" ) == rnk
|
||
})# the last gave '0' and a warning in Matrix 1.3-0
|
||
}
|
||
chkRnk( x, 2)
|
||
chkRnk(diag(1), 1) # had "empty stopifnot" (-> Error in MM's experimental setup) + warning 'min(<empty>)'
|
||
(m3 <- cbind(2, rbind(diag(pi, 2), 8)))
|
||
chkRnk(m3, 3)
|
||
chkRnk(matrix(0, 4,3), 0)
|
||
chkRnk(matrix(1, 5,5), 1) # had failed for "maybeGrad"
|
||
chkRnk(matrix(1, 5,2), 1)
|
||
|
||
|
||
showSys.time(
|
||
for(i in 1:120) {
|
||
set.seed(i)
|
||
M <- rspMat(n=rpois(1,50), m=rpois(1,20), density = 1/(4*rpois(1, 4)))
|
||
cat(sprintf("%3d: dim(M) = %2dx%2d, rank=%2d, k=%9.4g; ",
|
||
i, nrow(M), ncol(M), rankMatrix(M), kappa(M)))
|
||
for(super in c(FALSE,TRUE)) {
|
||
cat("super=",super,"M: ")
|
||
## 2018-01-04, Avi Adler: needed 1.2e-12 in Windows 64 (for i=55, l.1):
|
||
cholCheck( M , tol=2e-12, super=super); cat(" M': ")
|
||
cholCheck(t(M), tol=2e-12, super=super)
|
||
}
|
||
cat(" [Ok]\n")
|
||
})
|
||
|
||
.updateCHMfactor
|
||
## TODO: (--> ../TODO "Cholesky"):
|
||
## ----
|
||
## allow Cholesky(A,..) when A is not symmetric *AND*
|
||
## we really want to factorize AA' ( + beta * I)
|
||
|
||
|
||
## Schur() ----------------------
|
||
checkSchur <- function(A, SchurA = Schur(A), tol = 1e-14) {
|
||
stopifnot(is(SchurA, "Schur"),
|
||
isOrthogonal(Q <- SchurA@Q),
|
||
all.equal(as.mat(A),
|
||
as.mat(Q %*% SchurA@T %*% t(Q)), tolerance = tol))
|
||
}
|
||
|
||
SH <- Schur(H5 <- Hilbert(5))
|
||
checkSchur(H5, SH)
|
||
checkSchur(Diagonal(x = 9:3))
|
||
|
||
p <- 4L
|
||
uTp <- new("dtpMatrix", x=c(2, 3, -1, 4:6, -2:1), Dim = c(p,p))
|
||
(uT <- as(uTp, "unpackedMatrix"))
|
||
## Schur ( <general> ) <--> Schur( <triangular> )
|
||
Su <- Schur(uT) ; checkSchur(uT, Su)
|
||
gT <- as(uT,"generalMatrix")
|
||
Sg <- Schur(gT) ; checkSchur(gT, Sg)
|
||
Stg <- Schur(t(gT));checkSchur(t(gT), Stg)
|
||
Stu <- Schur(t(uT));checkSchur(t(uT), Stu)
|
||
|
||
stopifnot(exprs = {
|
||
identical3(Sg@T, uT, Su@T)
|
||
identical(Sg@Q, as(diag(p), "generalMatrix"))
|
||
## LaPck 3.12.0: these must be more careful (Q is *different* permutation):
|
||
is.integer(print(ip <- invPerm(pp <- as(Stg@Q, "pMatrix")@perm)))
|
||
identical(Stg@T, as(t(gT[,ip])[,ip], "triangularMatrix"))
|
||
identical(Stg@Q, as( diag(p)[,ip], "generalMatrix"))
|
||
## Stu still has p:1 permutation, but should not rely on it
|
||
is.integer(print(i2 <- invPerm(as(Stu@Q, "pMatrix")@perm)))
|
||
identical(Stu@T, as(t(uT[,i2])[,i2], "triangularMatrix"))
|
||
identical(Stu@Q, as( diag(p)[,i2], "pMatrix")) # Schur(<triangular>) ==> 'Q' is pMatrix
|
||
})
|
||
|
||
|
||
## the pedigreemm example where solve(.) failed:
|
||
p <- new("dtCMatrix", i = c(2L, 3L, 2L, 5L, 4L, 4:5), p = c(0L, 2L, 4:7, 7L),
|
||
Dim = c(6L, 6L), Dimnames = list(as.character(1:6), NULL),
|
||
x = rep.int(-0.5, 7), uplo = "L", diag = "U")
|
||
Sp <- Schur(p)
|
||
Sp. <- Schur(as(p,"generalMatrix"))
|
||
Sp.p <- Schur(crossprod(p))
|
||
## the last two failed
|
||
ip <- solve(p)
|
||
assert.EQ.mat(solve(ip), as(p,"matrix"))
|
||
|
||
|
||
## chol2inv() for a traditional matrix
|
||
assert.EQ.mat( crossprod(chol2inv(chol(Diagonal(x = 5:1)))),
|
||
C <- crossprod(chol2inv(chol( diag(x = 5:1)))))
|
||
stopifnot(all.equal(C, diag((5:1)^-2)))
|
||
## failed in some versions because of a "wrong" implicit generic
|
||
|
||
U <- cbind(1:0, 2*(1:2))
|
||
(sU <- as(U, "CsparseMatrix"))
|
||
validObject(sS <- crossprod(sU))
|
||
C. <- chol(sS)
|
||
stopifnot(all.equal(C., sU, tolerance=1e-15))
|
||
## chol(<triangular sparse which is diagonal>)
|
||
tC7 <- .trDiagonal(7, 7:1)
|
||
stopifnotValid(tC7, "dtCMatrix")
|
||
ch7 <- chol(tC7) ## this (and the next 2) failed: 'no slot .. "factors" ..."dtCMatrix"'
|
||
chT7 <- chol(tT7 <- as(tC7, "TsparseMatrix"))
|
||
chR7 <- chol(tR7 <- as(tC7, "RsparseMatrix"))
|
||
stopifnot(expr = {
|
||
isDiagonal(ch7)
|
||
identical(chT7, ch7) # "ddiMatrix" all of them
|
||
identical(chR7, ch7) # "ddiMatrix" all of them
|
||
all.equal(sqrt(7:1), diag(ch7 ))
|
||
})
|
||
|
||
|
||
|
||
## From [Bug 14834] New: chol2inv *** caught segfault ***
|
||
n <- 1e6 # was 595362
|
||
A <- chol( D <- Diagonal(n) )
|
||
stopifnot(identical(A,D)) # A remains (unit)diagonal
|
||
is(tA <- as(A,"triangularMatrix"))# currently a dtTMatrix
|
||
stopifnotValid(tA, "dsparseMatrix")
|
||
CA <- as(tA, "CsparseMatrix")
|
||
|
||
selectMethod(solve, c("dtCMatrix","missing"))
|
||
##--> .Call(dtCMatrix_sparse_solve, a, .trDiagonal(n)) in ../src/dtCMatrix.c
|
||
sA <- solve(CA)## -- R_CheckStack() segfault in Matrix <= 1.0-4
|
||
nca <- diagU2N(CA)
|
||
stopifnot(identical(sA, nca))
|
||
## same check with non-unit-diagonal D :
|
||
A <- chol(D <- Diagonal(n, x = 0.5))
|
||
ia <- chol2inv(A)
|
||
stopifnot(is(ia, "diagonalMatrix"),
|
||
all.equal(ia@x, rep(2,n), tolerance = 1e-15))
|
||
|
||
##------- Factor caches must be cleaned - even after scalar-Ops such as "2 *"
|
||
set.seed(7)
|
||
d <- 5
|
||
S <- 10*Diagonal(d) + rsparsematrix(d,d, 1/4)
|
||
class(M <- as(S, "denseMatrix")) # dgeMatrix
|
||
m <- as.matrix(M)
|
||
(dS <- determinant(S))
|
||
stopifnot(exprs = {
|
||
all.equal(determinant(m), dS, tolerance=1e-15)
|
||
all.equal(dS, determinant(M), tolerance=1e-15)
|
||
## These had failed, as the "LU" factor cache was kept unchanged in 2*M :
|
||
all.equal(determinant(2*S), determinant(2*M) -> d2M)
|
||
all.equal(determinant(S^2), determinant(M^2) -> dM2)
|
||
all.equal(determinant(m^2), dM2)
|
||
all.equal(d*log(2), c(d2M$modulus - dS$modulus))
|
||
})
|
||
|
||
## misc. bugs found in Matrix 1.4-1
|
||
L. <- new("dtCMatrix", Dim = c(1L, 1L), uplo = "L",
|
||
p = c(0L, 1L), i = 0L, x = 1)
|
||
S. <- forceSymmetric(L.)
|
||
lu(S.)
|
||
stopifnot(validObject(lu(L.)), # was invalid
|
||
identical(names(S.@factors), "sparseLU")) # was "lu"
|
||
|
||
## chol() should give matrix with 'Dimnames',
|
||
## even if 'Dimnames' are not cached
|
||
D. <- as(diag(3), "CsparseMatrix")
|
||
D.@Dimnames <- dn <- list(zzz = letters[1:3], ZZZ = LETTERS[1:3])
|
||
cd1 <- chol(D.) # "fresh"
|
||
stopifnot(identical(cd1@Dimnames, rep(dn[2L], 2L)))
|
||
cd2 <- chol(D.) # from cache
|
||
stopifnot(identical(cd1, cd2))
|
||
|
||
## lu(<m-by-0>), lu(<0-by-n>), BunchKaufman(<0-by-0>), chol(<0-by-0>)
|
||
stopifnot(identical(lu(new("dgeMatrix", Dim = c(2L, 0L))),
|
||
new("denseLU", Dim = c(2L, 0L))),
|
||
identical(lu(new("dgeMatrix", Dim = c(0L, 2L))),
|
||
new("denseLU", Dim = c(0L, 2L))),
|
||
identical(BunchKaufman(new("dsyMatrix", uplo = "U")),
|
||
new("BunchKaufman", uplo = "U")),
|
||
identical(BunchKaufman(new("dspMatrix", uplo = "L")),
|
||
new("pBunchKaufman", uplo = "L")),
|
||
identical(Cholesky(new("dpoMatrix", uplo = "U")),
|
||
new("Cholesky", uplo = "U")),
|
||
identical(Cholesky(new("dppMatrix", uplo = "L")),
|
||
new("pCholesky", uplo = "L")))
|
||
|
||
## determinant(<ds[yp]Matrix>) going via Bunch-Kaufman
|
||
set.seed(15742)
|
||
n <- 10L
|
||
syU <- syL <- new("dsyMatrix", Dim = c(n, n), x = rnorm(n * n))
|
||
spU <- spL <- new("dspMatrix", Dim = c(n, n), x = rnorm((n * (n + 1L)) %/% 2L))
|
||
syL@uplo <- spL@uplo <- "L"
|
||
for(m in list(syU, syL, spU, spL))
|
||
for(givelog in c(FALSE, TRUE))
|
||
stopifnot(all.equal(determinant( m, givelog),
|
||
determinant(as(m, "matrix"), givelog)))
|
||
|
||
## was an error at least in Matrix 1.5-4 ...
|
||
BunchKaufman(as.matrix(1))
|
||
|
||
|
||
## 'expand2': product of listed factors should reproduce factorized matrix
|
||
## FIXME: many of our %*% methods still mangle dimnames or names(dimnames) ...
|
||
## hence for now we coerce the factors to matrix before multiplying
|
||
chkMF <- function(X, Y, FUN, ...) {
|
||
## t(x)@factors may preserve factorizations with x@uplo
|
||
X@factors <- list()
|
||
|
||
mf <- FUN(X, ...)
|
||
e2.mf <- expand2(mf)
|
||
e1.mf <- sapply(names(e2.mf), expand1, x = mf, simplify = FALSE)
|
||
|
||
m.e2.mf <- lapply(e2.mf, as, "matrix")
|
||
m.e1.mf <- lapply(e1.mf, as, "matrix")
|
||
|
||
identical(m.e1.mf, lapply(m.e2.mf, unname)) &&
|
||
isTRUE(all.equal(Reduce(`%*%`, m.e2.mf), Y))
|
||
}
|
||
set.seed(24831)
|
||
n <- 16L
|
||
mS <- tcrossprod(matrix(rnorm(n * n), n, n,
|
||
dimnames = list(A = paste0("s", seq_len(n)), NULL)))
|
||
sS <- as(pS <- as(S <- as(mS, "dpoMatrix"), "packedMatrix"), "CsparseMatrix")
|
||
stopifnot(exprs = {
|
||
chkMF( S , mS, Schur)
|
||
chkMF( pS , mS, Schur)
|
||
chkMF( S , mS, lu)
|
||
chkMF( pS , mS, lu)
|
||
chkMF( sS , mS, lu)
|
||
chkMF( sS , mS, qr)
|
||
chkMF( S , mS, BunchKaufman)
|
||
chkMF( pS , mS, BunchKaufman)
|
||
chkMF(t( S), mS, BunchKaufman)
|
||
chkMF(t(pS), mS, BunchKaufman)
|
||
chkMF( S , mS, Cholesky)
|
||
chkMF( pS , mS, Cholesky)
|
||
chkMF(t( S), mS, Cholesky)
|
||
chkMF(t(pS), mS, Cholesky)
|
||
chkMF( sS , mS, Cholesky, super = FALSE, LDL = TRUE)
|
||
chkMF( sS , mS, Cholesky, super = FALSE, LDL = FALSE)
|
||
chkMF( sS , mS, Cholesky, super = TRUE, LDL = FALSE)
|
||
})
|
||
|
||
|
||
cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
|