R Under development (unstable) (2020-06-10 r78681) -- "Unsuffered Consequences"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> options(na.action=na.exclude) # preserve missings
> options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
> library(survival)
> 
> # From:	McGilchrist and Aisbett, Biometrics 47, 461-66, 1991
> # Data on the recurrence times to infection, at the point of insertion of
> #  the catheter, for kidney patients using portable dialysis equipment.
> #  Catheters may be removed for reasons other than infection, in which case
> #  the observation is censored.  Each patient has exactly 2 observations.
> 
> # Variables: patient, time, status, age, 
> #	   sex (1=male, 2=female),
> #	   disease type (0=GN, 1=AN, 2=PKD, 3=Other)
> #	   author's estimate of the frailty
> aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...)
> 
> # I don't match their answers, and I think that I'm right
> kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney)
> kfit1<- coxph(Surv(time, status) ~age + sex + disease +
+ 	      frailty(id, theta=1), kidney, iter=20)
> kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney)
> temp <-  coxph(Surv(time, status) ~age + sex + disease +
+ 	      frailty(id, theta=1, sparse=F), kidney)
> 
> 
> # Check out the EM based score equations
> #  temp1 and kfit1 should have essentially the same coefficients
> #  temp2 should equal kfit1$frail
> # equality won't be exact because of the different iteration paths
> temp1 <- coxph(Surv(time, status) ~ age + sex + disease +
+ 	       offset(kfit1$frail[id]), kidney)
> rr <- tapply(resid(temp1), kidney$id, sum)
> temp2 <- log(rr/1 +1)
> aeq(temp1$coef, kfit1$coef, tolerance=.005) 
[1] TRUE
> aeq(temp2, kfit1$frail, tolerance=.005)
[1] TRUE
> 
> 
> 
> kfit
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id), 
    data = kidney)

                 coef  se(coef)       se2     Chisq DF       p
age          3.18e-03  1.11e-02  1.11e-02  8.14e-02  1   0.775
sex         -1.48e+00  3.58e-01  3.58e-01  1.71e+01  1 3.5e-05
diseaseGN    8.80e-02  4.06e-01  4.06e-01  4.68e-02  1   0.829
diseaseAN    3.51e-01  4.00e-01  4.00e-01  7.70e-01  1   0.380
diseasePKD  -1.43e+00  6.31e-01  6.31e-01  5.14e+00  1   0.023
frailty(id)                                2.71e-05  0   0.933

Iterations: 6 outer, 35 Newton-Raphson
     Variance of random effect= 5e-07   I-likelihood = -179.1 
Degrees of freedom for terms= 1 1 3 0 
Likelihood ratio test=17.6  on 5 df, p=0.003
n= 76, number of events= 58 
> kfit1
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    theta = 1), data = kidney, iter = 20)

                           coef se(coef)      se2    Chisq   DF       p
age                     0.00389  0.01959  0.00943  0.03933  1.0 0.84280
sex                    -2.00764  0.59104  0.41061 11.53834  1.0 0.00068
diseaseGN               0.35335  0.71653  0.38015  0.24319  1.0 0.62191
diseaseAN               0.52341  0.72298  0.40463  0.52413  1.0 0.46909
diseasePKD             -0.45938  1.08977  0.66088  0.17770  1.0 0.67336
frailty(id, theta = 1)                            28.50571 18.8 0.06909

Iterations: 1 outer, 14 Newton-Raphson
     Variance of random effect= 1   I-likelihood = -182.5 
Degrees of freedom for terms=  0.2  0.5  1.1 18.8 
Likelihood ratio test=63.8  on 20.6 df, p=3e-06
n= 76, number of events= 58 
> kfit0
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease, data = kidney)

                coef exp(coef)  se(coef)      z        p
age         0.003181  1.003186  0.011146  0.285   0.7754
sex        -1.483137  0.226925  0.358230 -4.140 3.47e-05
diseaseGN   0.087957  1.091941  0.406369  0.216   0.8286
diseaseAN   0.350794  1.420195  0.399717  0.878   0.3802
diseasePKD -1.431108  0.239044  0.631109 -2.268   0.0234

Likelihood ratio test=17.65  on 5 df, p=0.003423
n= 76, number of events= 58 
> temp
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    theta = 1, sparse = F), data = kidney)

                              coef se(coef)      se2    Chisq   DF       p
age                        0.00389  0.01865  0.01120  0.04342  1.0 0.83494
sex                       -2.00763  0.57624  0.40799 12.13849  1.0 0.00049
diseaseGN                  0.35335  0.67865  0.43154  0.27109  1.0 0.60260
diseaseAN                  0.52340  0.68910  0.44038  0.57690  1.0 0.44753
diseasePKD                -0.45934  1.01394  0.71297  0.20523  1.0 0.65053
frailty(id, theta = 1, sp                            26.23016 18.7 0.11573

Iterations: 1 outer, 5 Newton-Raphson
     Variance of random effect= 1   I-likelihood = -182.5 
Degrees of freedom for terms=  0.4  0.5  1.4 18.7 
Likelihood ratio test=63.8  on 21 df, p=3e-06
n= 76, number of events= 58 
> 
> #
> # Now fit the data using REML
> #
> kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + 
+ 		frailty(id, dist='gauss'), kidney)
> kfitm2 <- coxph(Surv(time,status) ~ age + sex + disease + 
+ 		      frailty(id, dist='gauss', sparse=F), kidney)
> kfitm1
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    dist = "gauss"), data = kidney)

                              coef se(coef)      se2    Chisq   DF       p
age                        0.00489  0.01497  0.01059  0.10678  1.0 0.74384
sex                       -1.69728  0.46101  0.36170 13.55454  1.0 0.00023
diseaseGN                  0.17986  0.54485  0.39273  0.10897  1.0 0.74131
diseaseAN                  0.39294  0.54482  0.39816  0.52016  1.0 0.47077
diseasePKD                -1.13631  0.82519  0.61728  1.89621  1.0 0.16850
frailty(id, dist = "gauss                            17.89195 12.1 0.12376

Iterations: 7 outer, 42 Newton-Raphson
     Variance of random effect= 0.493 
Degrees of freedom for terms=  0.5  0.6  1.7 12.1 
Likelihood ratio test=47.5  on 14.9 df, p=3e-05
n= 76, number of events= 58 
> summary(kfitm2)
Call:
coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, 
    dist = "gauss", sparse = F), data = kidney)

  n= 76, number of events= 58 

                          coef      se(coef) se2     Chisq DF    p      
age                        0.004924 0.0149   0.01084  0.11  1.00 0.74000
sex                       -1.702037 0.4631   0.36134 13.51  1.00 0.00024
diseaseGN                  0.181733 0.5413   0.40169  0.11  1.00 0.74000
diseaseAN                  0.394416 0.5428   0.40520  0.53  1.00 0.47000
diseasePKD                -1.131602 0.8175   0.62981  1.92  1.00 0.17000
frailty(id, dist = "gauss                            18.13 12.27 0.12000

           exp(coef) exp(-coef) lower .95 upper .95
age           1.0049     0.9951   0.97601    1.0347
sex           0.1823     5.4851   0.07355    0.4519
diseaseGN     1.1993     0.8338   0.41515    3.4646
diseaseAN     1.4835     0.6741   0.51196    4.2988
diseasePKD    0.3225     3.1006   0.06497    1.6010
gauss:1       1.7011     0.5879   0.51805    5.5856
gauss:2       1.4241     0.7022   0.38513    5.2662
gauss:3       1.1593     0.8626   0.38282    3.5108
gauss:4       0.6226     1.6063   0.23397    1.6566
gauss:5       1.2543     0.7972   0.39806    3.9526
gauss:6       1.1350     0.8811   0.38339    3.3599
gauss:7       1.9726     0.5069   0.56938    6.8342
gauss:8       0.6196     1.6140   0.21662    1.7721
gauss:9       0.8231     1.2149   0.28884    2.3456
gauss:10      0.5030     1.9882   0.17468    1.4482
gauss:11      0.7565     1.3218   0.27081    2.1134
gauss:12      1.1048     0.9052   0.33430    3.6510
gauss:13      1.3022     0.7679   0.42746    3.9673
gauss:14      0.5912     1.6915   0.18537    1.8855
gauss:15      0.5449     1.8352   0.18580    1.5980
gauss:16      1.0443     0.9576   0.31424    3.4702
gauss:17      0.9136     1.0945   0.30004    2.7820
gauss:18      0.9184     1.0889   0.32476    2.5970
gauss:19      0.6426     1.5562   0.19509    2.1166
gauss:20      1.1698     0.8549   0.34528    3.9631
gauss:21      0.3336     2.9974   0.10202    1.0910
gauss:22      0.6871     1.4554   0.23531    2.0064
gauss:23      1.4778     0.6767   0.47560    4.5918
gauss:24      1.0170     0.9832   0.31555    3.2779
gauss:25      0.8096     1.2352   0.27491    2.3843
gauss:26      0.6145     1.6274   0.21491    1.7570
gauss:27      1.0885     0.9187   0.32819    3.6101
gauss:28      1.5419     0.6485   0.49231    4.8292
gauss:29      1.3785     0.7254   0.43766    4.3421
gauss:30      1.3748     0.7274   0.44444    4.2530
gauss:31      1.4447     0.6922   0.47031    4.4380
gauss:32      1.1993     0.8339   0.35207    4.0850
gauss:33      1.9449     0.5142   0.55229    6.8491
gauss:34      0.8617     1.1605   0.27685    2.6820
gauss:35      1.7031     0.5872   0.52657    5.5084
gauss:36      0.8275     1.2085   0.22811    3.0015
gauss:37      1.4707     0.6800   0.38936    5.5549
gauss:38      1.0479     0.9543   0.30685    3.5789

Iterations: 6 outer, 21 Newton-Raphson
     Variance of random effect= 0.5090956 
Degrees of freedom for terms=  0.5  0.6  1.7 12.3 
Concordance= 0.796  (se = 0.032 )
Likelihood ratio test= 117.9  on 15.14 df,   p=<2e-16

> #
> # Fit the kidney data using AIC
> #
> 
> # gamma, corrected aic
> coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=T), 
+       kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    method = "aic", caic = T), data = kidney)

                              coef se(coef)      se2    Chisq   DF       p
age                        0.00364  0.01048  0.00891  0.12053 1.00 0.72846
sex                       -1.31953  0.39556  0.32497 11.12781 1.00 0.00085
frailty(id, method = "aic                            13.55258 7.81 0.08692

Iterations: 9 outer, 63 Newton-Raphson
     Variance of random effect= 0.203   I-likelihood = -182.1 
Degrees of freedom for terms= 0.7 0.7 7.8 
Likelihood ratio test=33.3  on 9.21 df, p=1e-04
n= 76, number of events= 58 
> 
> coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t'), kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    dist = "t"), data = kidney)

                            coef se(coef)      se2    Chisq   DF       p
age                      0.00561  0.01203  0.00872  0.21774  1.0 0.64077
sex                     -1.65487  0.48294  0.38527 11.74180  1.0 0.00061
frailty(id, dist = "t")                            20.33462 13.9 0.11752

Iterations: 8 outer, 58 Newton-Raphson
     Variance of random effect= 0.825 
Degrees of freedom for terms=  0.5  0.6 13.9 
Likelihood ratio test=48.6  on 15.1 df, p=2e-05
n= 76, number of events= 58 
> coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss', method='aic',
+ 					       caic=T), kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    dist = "gauss", method = "aic", caic = T), data = kidney)

                              coef se(coef)      se2    Chisq   DF      p
age                        0.00303  0.01031  0.00895  0.08646 1.00 0.7687
sex                       -1.15152  0.36368  0.30556 10.02558 1.00 0.0015
frailty(id, dist = "gauss                            12.35238 6.76 0.0800

Iterations: 7 outer, 41 Newton-Raphson
     Variance of random effect= 0.185 
Degrees of freedom for terms= 0.8 0.7 6.8 
Likelihood ratio test=28.4  on 8.22 df, p=5e-04
n= 76, number of events= 58 
> 
> 
> # uncorrected aic
> coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=F), 
+       kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    method = "aic", caic = F), data = kidney)

                              coef se(coef)      se2    Chisq   DF       p
age                        0.00785  0.01503  0.00823  0.27284  1.0 0.60143
sex                       -1.88990  0.56114  0.39941 11.34311  1.0 0.00076
frailty(id, method = "aic                            37.45897 19.7 0.00918

Iterations: 8 outer, 87 Newton-Raphson
     Variance of random effect= 0.886   I-likelihood = -182.8 
Degrees of freedom for terms=  0.3  0.5 19.7 
Likelihood ratio test=61.2  on 20.5 df, p=6e-06
n= 76, number of events= 58 
Warning message:
In coxpenal.fit(X, Y, istrat, offset, init = init, control, weights = weights,  :
  Inner loop failed to coverge for iterations 4
> 
> coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t', caic=F), kidney)
Call:
coxph(formula = Surv(time, status) ~ age + sex + frailty(id, 
    dist = "t", caic = F), data = kidney)

                              coef se(coef)      se2    Chisq   DF       p
age                        0.00561  0.01203  0.00872  0.21774  1.0 0.64077
sex                       -1.65487  0.48294  0.38527 11.74180  1.0 0.00061
frailty(id, dist = "t", c                            20.33462 13.9 0.11752

Iterations: 8 outer, 58 Newton-Raphson
     Variance of random effect= 0.825 
Degrees of freedom for terms=  0.5  0.6 13.9 
Likelihood ratio test=48.6  on 15.1 df, p=2e-05
n= 76, number of events= 58 
> 
> proc.time()
   user  system elapsed 
  0.930   0.067   0.989