#-*- R -*- ## Script from Fourth Edition of `Modern Applied Statistics with S' # Chapter 12 Classification library(MASS) pdf(file="ch12.pdf", width=8, height=6, pointsize=9) options(width=65, digits=5) library(class) library(nnet) # 12.1 Discriminant Analysis ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3]) ir.species <- factor(c(rep("s", 50), rep("c", 50), rep("v", 50))) (ir.lda <- lda(log(ir), ir.species)) ir.ld <- predict(ir.lda, dimen = 2)$x eqscplot(ir.ld, type = "n", xlab = "first linear discriminant", ylab = "second linear discriminant") text(ir.ld, labels = as.character(ir.species[-143]), col = 3 + unclass(ir.species), cex = 0.8) plot(ir.lda, dimen = 1) plot(ir.lda, type = "density", dimen = 1) lcrabs <- log(crabs[, 4:8]) crabs.grp <- factor(c("B", "b", "O", "o")[rep(1:4, each = 50)]) (dcrabs.lda <- lda(crabs$sex ~ FL + RW + CL + CW, lcrabs)) table(crabs$sex, predict(dcrabs.lda)$class) (dcrabs.lda4 <- lda(crabs.grp ~ FL + RW + CL + CW, lcrabs)) dcrabs.pr4 <- predict(dcrabs.lda4, dimen = 2) dcrabs.pr2 <- dcrabs.pr4$post[, c("B", "O")] %*% c(1, 1) table(crabs$sex, dcrabs.pr2 > 0.5) cr.t <- dcrabs.pr4$x[, 1:2] eqscplot(cr.t, type = "n", xlab = "First LD", ylab = "Second LD") text(cr.t, labels = as.character(crabs.grp)) perp <- function(x, y) { m <- (x+y)/2 s <- - (x[1] - y[1])/(x[2] - y[2]) abline(c(m[2] - s*m[1], s)) invisible() } cr.m <- lda(cr.t, crabs$sex)$means points(cr.m, pch = 3, mkh = 0.3) perp(cr.m[1, ], cr.m[2, ]) cr.lda <- lda(cr.t, crabs.grp) x <- seq(-6, 6, 0.25) y <- seq(-2, 2, 0.25) Xcon <- matrix(c(rep(x,length(y)), rep(y, rep(length(x), length(y)))),,2) cr.pr <- predict(cr.lda, Xcon)$post[, c("B", "O")] %*% c(1,1) contour(x, y, matrix(cr.pr, length(x), length(y)), levels = 0.5, labex = 0, add = TRUE, lty= 3) for(i in c("O", "o", "B", "b")) print(var(lcrabs[crabs.grp == i, ])) fgl.ld <- predict(lda(type ~ ., fgl), dimen = 2)$x eqscplot(fgl.ld, type = "n", xlab = "LD1", ylab = "LD2") # either # for(i in seq(along = levels(fgl$type))) { # set <- fgl$type[-40] == levels(fgl$type)[i] # points(fgl.ld[set,], pch = 18, cex = 0.6, col = 2 + i)} # key(text = list(levels(fgl$type), col = 3:8)) # or text(fgl.ld, cex = 0.6, labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]]) fgl.rld <- predict(lda(type ~ ., fgl, method = "t"), dimen = 2)$x eqscplot(fgl.rld, type = "n", xlab = "LD1", ylab = "LD2") # either # for(i in seq(along = levels(fgl$type))) { # set <- fgl$type[-40] == levels(fgl$type)[i] # points(fgl.rld[set,], pch = 18, cex = 0.6, col = 2 + i)} # key(text = list(levels(fgl$type), col = 3:8)) # or text(fgl.rld, cex = 0.6, labels = c("F", "N", "V", "C", "T", "H")[fgl$type[-40]]) # 12.2 Classification theory #decrease len if you have little memory. predplot <- function(object, main="", len = 100, ...) { plot(Cushings[,1], Cushings[,2], log="xy", type="n", xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol", main = main) for(il in 1:4) { set <- Cushings$Type==levels(Cushings$Type)[il] text(Cushings[set, 1], Cushings[set, 2], labels=as.character(Cushings$Type[set]), col = 2 + il) } xp <- seq(0.6, 4.0, length=len) yp <- seq(-3.25, 2.45, length=len) cushT <- expand.grid(Tetrahydrocortisone = xp, Pregnanetriol = yp) Z <- predict(object, cushT, ...); zp <- as.numeric(Z$class) zp <- Z$post[,3] - pmax(Z$post[,2], Z$post[,1]) contour(exp(xp), exp(yp), matrix(zp, len), add = TRUE, levels = 0, labex = 0) zp <- Z$post[,1] - pmax(Z$post[,2], Z$post[,3]) contour(exp(xp), exp(yp), matrix(zp, len), add = TRUE, levels = 0, labex = 0) invisible() } cushplot <- function(xp, yp, Z) { plot(Cushings[, 1], Cushings[, 2], log = "xy", type = "n", xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol") for(il in 1:4) { set <- Cushings$Type==levels(Cushings$Type)[il] text(Cushings[set, 1], Cushings[set, 2], labels = as.character(Cushings$Type[set]), col = 2 + il) } zp <- Z[, 3] - pmax(Z[, 2], Z[, 1]) contour(exp(xp), exp(yp), matrix(zp, np), add = TRUE, levels = 0, labex = 0) zp <- Z[, 1] - pmax(Z[, 2], Z[, 3]) contour(exp(xp), exp(yp), matrix(zp, np), add = TRUE, levels = 0, labex = 0) invisible() } cush <- log(as.matrix(Cushings[, -3])) tp <- Cushings$Type[1:21, drop = TRUE] cush.lda <- lda(cush[1:21,], tp); predplot(cush.lda, "LDA") cush.qda <- qda(cush[1:21,], tp); predplot(cush.qda, "QDA") predplot(cush.qda, "QDA (predictive)", method = "predictive") predplot(cush.qda, "QDA (debiased)", method = "debiased") Cf <- data.frame(tp = tp, Tetrahydrocortisone = log(Cushings[1:21, 1]), Pregnanetriol = log(Cushings[1:21, 2]) ) cush.multinom <- multinom(tp ~ Tetrahydrocortisone + Pregnanetriol, Cf, maxit = 250) xp <- seq(0.6, 4.0, length = 100); np <- length(xp) yp <- seq(-3.25, 2.45, length = 100) cushT <- expand.grid(Tetrahydrocortisone = xp, Pregnanetriol = yp) Z <- predict(cush.multinom, cushT, type = "probs") cushplot(xp, yp, Z) library(tree) cush.tr <- tree(tp ~ Tetrahydrocortisone + Pregnanetriol, Cf) plot(cush[, 1], cush[, 2], type = "n", xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol") for(il in 1:4) { set <- Cushings$Type==levels(Cushings$Type)[il] text(cush[set, 1], cush[set, 2], labels = as.character(Cushings$Type[set]), col = 2 + il) } par(cex = 1.5); partition.tree(cush.tr, add = TRUE); par(cex = 1) # 12.3 Non-parametric rules Z <- knn(scale(cush[1:21, ], FALSE, c(3.4, 5.7)), scale(cushT, FALSE, c(3.4, 5.7)), tp) cushplot(xp, yp, class.ind(Z)) Z <- knn(scale(cush[1:21, ], FALSE, c(3.4, 5.7)), scale(cushT, FALSE, c(3.4, 5.7)), tp, k = 3) cushplot(xp, yp, class.ind(Z)) # 12.4 Neural networks pltnn <- function(main, ...) { plot(Cushings[,1], Cushings[,2], log="xy", type="n", xlab="Tetrahydrocortisone", ylab = "Pregnanetriol", main=main, ...) for(il in 1:4) { set <- Cushings$Type==levels(Cushings$Type)[il] text(Cushings[set, 1], Cushings[set, 2], as.character(Cushings$Type[set]), col = 2 + il) } } plt.bndry <- function(size=0, decay=0, ...) { cush.nn <- nnet(cush, tpi, skip=TRUE, softmax=TRUE, size=size, decay=decay, maxit=1000) invisible(b1(predict(cush.nn, cushT), ...)) } b1 <- function(Z, ...) { zp <- Z[,3] - pmax(Z[,2], Z[,1]) contour(exp(xp), exp(yp), matrix(zp, np), add=TRUE, levels=0, labex=0, ...) zp <- Z[,1] - pmax(Z[,3], Z[,2]) contour(exp(xp), exp(yp), matrix(zp, np), add=TRUE, levels=0, labex=0, ...) } cush <- cush[1:21,]; tpi <- class.ind(tp) # functions pltnn and plt.bndry given in the scripts par(mfrow = c(2, 2)) pltnn("Size = 2") set.seed(1); plt.bndry(size = 2, col = 2) set.seed(3); plt.bndry(size = 2, col = 3) plt.bndry(size = 2, col = 4) pltnn("Size = 2, lambda = 0.001") set.seed(1); plt.bndry(size = 2, decay = 0.001, col = 2) set.seed(2); plt.bndry(size = 2, decay = 0.001, col = 4) pltnn("Size = 2, lambda = 0.01") set.seed(1); plt.bndry(size = 2, decay = 0.01, col = 2) set.seed(2); plt.bndry(size = 2, decay = 0.01, col = 4) pltnn("Size = 5, 20 lambda = 0.01") set.seed(2); plt.bndry(size = 5, decay = 0.01, col = 1) set.seed(2); plt.bndry(size = 20, decay = 0.01, col = 2) # functions pltnn and b1 are in the scripts pltnn("Many local maxima") Z <- matrix(0, nrow(cushT), ncol(tpi)) for(iter in 1:20) { set.seed(iter) cush.nn <- nnet(cush, tpi, skip = TRUE, softmax = TRUE, size = 3, decay = 0.01, maxit = 1000, trace = FALSE) Z <- Z + predict(cush.nn, cushT) cat("final value", format(round(cush.nn$value,3)), "\n") b1(predict(cush.nn, cushT), col = 2, lwd = 0.5) } pltnn("Averaged") b1(Z, lwd = 3) # 12.5 Support vector machines library(e1071) crabs.svm <- svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1) table(true = crabs$sp, predicted = predict(crabs.svm, lcrabs)) svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1, cross = 10) # 12.6 Forensic glass example set.seed(123) # dump random partition from S-PLUS rand <- c(9, 6, 7, 10, 8, 8, 2, 2, 10, 1, 5, 2, 3, 8, 6, 8, 2, 6, 4, 4, 6, 1, 3, 2, 5, 5, 5, 3, 1, 9, 10, 2, 8, 2, 1, 6, 2, 7, 7, 8, 4, 1, 9, 5, 5, 1, 4, 6, 8, 6, 5, 7, 9, 2, 1, 1, 10, 9, 7, 6, 4, 7, 4, 8, 9, 9, 1, 8, 9, 5, 3, 3, 4, 8, 8, 6, 6, 9, 3, 10, 3, 10, 6, 6, 5, 10, 10, 2, 10, 6, 1, 4, 7, 8, 9, 10, 7, 10, 8, 4, 6, 8, 9, 10, 1, 9, 10, 6, 8, 4, 10, 8, 2, 10, 2, 3, 10, 1, 5, 9, 4, 4, 8, 2, 7, 6, 4, 8, 10, 4, 8, 10, 6, 10, 4, 9, 4, 1, 6, 5, 3, 2, 4, 1, 3, 4, 8, 4, 3, 7, 2, 5, 4, 5, 10, 7, 4, 2, 6, 3, 2, 2, 8, 4, 10, 8, 10, 2, 10, 6, 5, 2, 3, 2, 6, 2, 7, 7, 8, 9, 7, 10, 8, 6, 7, 9, 7, 10, 3, 2, 7, 5, 6, 1, 3, 9, 7, 7, 1, 8, 7, 8, 8, 8, 10, 4, 5, 9, 4, 6, 9, 6, 10, 2) con <- function(...) { print(tab <- table(...)) diag(tab) <- 0 cat("error rate = ", round(100*sum(tab)/length(list(...)[[1]]), 2), "%\n") invisible() } CVtest <- function(fitfn, predfn, ...) { res <- fgl$type for (i in sort(unique(rand))) { cat("fold ", i, "\n", sep = "") learn <- fitfn(rand != i, ...) res[rand == i] <- predfn(learn, rand == i) } res } res.multinom <- CVtest( function(x, ...) multinom(type ~ ., fgl[x, ], ...), function(obj, x) predict(obj, fgl[x, ], type = "class"), maxit = 1000, trace = FALSE) con(true = fgl$type, predicted = res.multinom) res.lda <- CVtest( function(x, ...) lda(type ~ ., fgl[x, ], ...), function(obj, x) predict(obj, fgl[x, ])$class ) con(true = fgl$type, predicted = res.lda) fgl0 <- fgl[ , -10] # drop type { res <- fgl$type for (i in sort(unique(rand))) { cat("fold ", i ,"\n", sep = "") sub <- rand == i res[sub] <- knn(fgl0[!sub, ], fgl0[sub, ], fgl$type[!sub], k = 1) } res } -> res.knn1 con(true = fgl$type, predicted = res.knn1) res.lb <- knn(fgl0, fgl0, fgl$type, k = 3, prob = TRUE, use.all = FALSE) table(attr(res.lb, "prob")) library(rpart) res.rpart <- CVtest( function(x, ...) { tr <- rpart(type ~ ., fgl[x,], ...) cp <- tr$cptable r <- cp[, 4] + cp[, 5] rmin <- min(seq(along = r)[cp[, 4] < min(r)]) cp0 <- cp[rmin, 1] cat("size chosen was", cp[rmin, 2] + 1, "\n") prune(tr, cp = 1.01*cp0) }, function(obj, x) predict(obj, fgl[x, ], type = "class"), cp = 0.001 ) con(true = fgl$type, predicted = res.rpart) fgl1 <- fgl fgl1[1:9] <- lapply(fgl[, 1:9], function(x) {r <- range(x); (x - r[1])/diff(r)}) CVnn2 <- function(formula, data, size = rep(6,2), lambda = c(0.001, 0.01), nreps = 1, nifold = 5, verbose = 99, ...) { CVnn1 <- function(formula, data, nreps=1, ri, verbose, ...) { truth <- data[,deparse(formula[[2]])] res <- matrix(0, nrow(data), length(levels(truth))) if(verbose > 20) cat(" inner fold") for (i in sort(unique(ri))) { if(verbose > 20) cat(" ", i, sep="") for(rep in 1:nreps) { learn <- nnet(formula, data[ri !=i,], trace = FALSE, ...) res[ri == i,] <- res[ri == i,] + predict(learn, data[ri == i,]) } } if(verbose > 20) cat("\n") sum(as.numeric(truth) != max.col(res/nreps)) } truth <- data[,deparse(formula[[2]])] res <- matrix(0, nrow(data), length(levels(truth))) choice <- numeric(length(lambda)) for (i in sort(unique(rand))) { if(verbose > 0) cat("fold ", i,"\n", sep="") ri <- sample(nifold, sum(rand!=i), replace=TRUE) for(j in seq(along=lambda)) { if(verbose > 10) cat(" size =", size[j], "decay =", lambda[j], "\n") choice[j] <- CVnn1(formula, data[rand != i,], nreps=nreps, ri=ri, size=size[j], decay=lambda[j], verbose=verbose, ...) } decay <- lambda[which.is.max(-choice)] csize <- size[which.is.max(-choice)] if(verbose > 5) cat(" #errors:", choice, " ") # if(verbose > 1) cat("chosen size = ", csize, " decay = ", decay, "\n", sep="") for(rep in 1:nreps) { learn <- nnet(formula, data[rand != i,], trace=FALSE, size=csize, decay=decay, ...) res[rand == i,] <- res[rand == i,] + predict(learn, data[rand == i,]) } } factor(levels(truth)[max.col(res/nreps)], levels = levels(truth)) } if(FALSE) { # only run this if you have time to wait res.nn2 <- CVnn2(type ~ ., fgl1, skip = TRUE, maxit = 500, nreps = 10) con(true = fgl$type, predicted = res.nn2) } res.svm <- CVtest( function(x, ...) svm(type ~ ., fgl[x, ], ...), function(obj, x) predict(obj, fgl[x, ]), cost = 100, gamma = 1 ) con(true = fgl$type, predicted = res.svm) svm(type ~ ., data = fgl, cost = 100, gamma = 1, cross = 10) cd0 <- lvqinit(fgl0, fgl$type, prior = rep(1, 6)/6, k = 3) cd1 <- olvq1(fgl0, fgl$type, cd0) con(true = fgl$type, predicted = lvqtest(cd1, fgl0)) CV.lvq <- function() { res <- fgl$type for(i in sort(unique(rand))) { cat("doing fold", i, "\n") cd0 <- lvqinit(fgl0[rand != i,], fgl$type[rand != i], prior = rep(1, 6)/6, k = 3) cd1 <- olvq1(fgl0[rand != i,], fgl$type[rand != i], cd0) cd1 <- lvq3(fgl0[rand != i,], fgl$type[rand != i], cd1, niter = 10000) res[rand == i] <- lvqtest(cd1, fgl0[rand == i, ]) } res } con(true = fgl$type, predicted = CV.lvq()) # 12.7 Calibration plots CVprobs <- function(fitfn, predfn, ...) { res <- matrix(, 214, 6) for (i in sort(unique(rand))) { cat("fold ", i, "\n", sep = "") learn <- fitfn(rand != i, ...) res[rand == i, ] <- predfn(learn, rand == i) } res } probs.multinom <- CVprobs( function(x, ...) multinom(type ~ ., fgl[x, ], ...), function(obj, x) predict(obj, fgl[x, ], type = "probs"), maxit = 1000, trace = FALSE) probs.yes <- as.vector(class.ind(fgl$type)) probs <- as.vector(probs.multinom) par(pty = "s") plot(c(0, 1), c(0, 1), type = "n", xlab = "predicted probability", ylab = "", xaxs = "i", yaxs = "i", las = 1) rug(probs[probs.yes == 0], 0.02, side = 1, lwd = 0.5) rug(probs[probs.yes == 1], 0.02, side = 3, lwd = 0.5) abline(0, 1) newp <- seq(0, 1, length = 100) lines(newp, predict(loess(probs.yes ~ probs, span = 1), newp)) # End of ch12