R Under development (unstable) (2020-12-17 r79644) -- "Unsuffered Consequences" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > library(splines) > > # the nsk function should give the same solution as ns, but with a different > # parameterization > # > xx <- runif(500, 1, 100) > yy <- 10*log(xx) + rnorm(500, 0, 2) > tdata <- data.frame(xx=xx, yy=yy) > fit1 <- lm(yy ~ ns(xx, df=4), tdata, model=TRUE) > fit2 <- lm(yy ~ nsk(xx, df=4, b=0), tdata) > all.equal(predict(fit1), predict(fit2)) # same solution [1] TRUE > > xattr <- attributes(fit1$model[[2]]) > allknots <- sort(c(xattr$knots, xattr$Boundary.knots)) # knots that were used > pred.knot <- predict(fit1, newdata=list(xx=allknots)) > all.equal(pred.knot[-1] - pred.knot[1], coef(fit2)[-1], + check.attributes = FALSE) [1] TRUE > > > proc.time() user system elapsed 0.857 0.036 0.887