R Under development (unstable) (2019-04-05 r76323) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Test out the "return.all" argument of xpred > # this is a very small test case for debugging > # > library(rpart) > set.seed(10) > > tdata <- data.frame(y=1:12, x1= 12:1, x2=c(1,1,5,5,4,4,9,9,7,7,3,3)) > xgrp <- rep(1:3, length=12) > > fit1 <- rpart(y ~ x1 + x2, tdata, minsplit=6) > xfit1 <- xpred.rpart(fit1, xval=xgrp, return.all=T) > > xfit2 <- array(0, dim=dim(xfit1)) > cplist <- as.numeric(dimnames(xfit1)[[2]]) > > for (i in 1:3) { + tfit <- rpart(y ~ x1+x2, tdata, subset=(xgrp !=i), minsplit=6) + # xvals are actually done on the absolute risk (node's risk /n), not on + # the rescaled risk ((node risk)/ (top node risk)) which is the basis + # for the printed CP. To get the right answer we need to rescale. + cp2 <- cplist * (fit1$frame$dev[1] / fit1$frame$n[1]) / + (tfit$frame$dev[1] / tfit$frame$n[1]) + + for (j in 1:length(cp2)) { + tfit2 <- prune(tfit, cp=cp2[j]) + temp <- predict(tfit2, newdata=tdata[xgrp==i,], type='matrix') + xfit2[xgrp==i, j] <- temp + } + } > > all.equal(xfit1, xfit2, check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.141 0.015 0.151