library(nlme) ## ==> ~/R/Pkgs/MASS_CRAN/tests/lme.R : tests stepAIC() for *both* lme and gls if (!require(MASS)) q("no") ## deviance.lme() and extractAIC.lme() : set.seed(321) # to be sure a <- data.frame( resp=rnorm(250), cov1=rnorm(250), cov2=rnorm(250), group=rep(letters[1:10],25) ) mod1 <- lme(resp~cov1, a, ~cov1|group, method="ML") mod2 <- stepAIC(mod1, scope = list(upper=~(cov1+cov2)^2, lower=~1) ) stopifnot(all.equal(logLik(mod1), logLik(mod2)), all.equal( coef(mod1), coef(mod2)), all.equal(logLik(mod2), structure(-344.190316608, class = "logLik", nall = 250L, nobs = 250, df = 6))) ## deviance.gls() and extractAIC.gls() : data(beav2, package = "MASS") set.seed(123) beav <- beav2; beav$dummy <- rnorm(nrow(beav)) beav.gls <- gls(temp ~ activ + dummy, data = beav, corr = corAR1(0.8), method = "ML") stopifnot(all.equal(sigma(beav.gls), 0.2516395, tol = 1e-6), all.equal(coef(beav.gls), c("(Intercept)" = 37.191057, activ = 0.61602059, dummy =0.006842112))) st.beav <- stepAIC(beav.gls) stopifnot(all.equal(coef(st.beav), c("(Intercept)" = 37.1919453124, "activ" = 0.614177660082)), all.equal(sigma(st.beav), 0.2527856, tol = 1e-6))