#-*- R -*- ## Script from Fourth Edition of `Modern Applied Statistics with S' # Chapter 4 Graphical Output library(MASS) library(lattice) pdf(file="ch04.pdf", width=8, height=6, pointsize=9) options(width=65, digits=5) # 4.2 Basic plotting functions lung.deaths <- aggregate(ts.union(mdeaths, fdeaths), 1) barplot(t(lung.deaths), names = dimnames(lung.deaths)[[1]], main = "UK deaths from lung disease") if(interactive()) legend(locator(1), c("Males", "Females"), fill = c(2, 3)) loc <- barplot(t(lung.deaths), names = dimnames(lung.deaths)[[1]], angle = c(45, 135), density = 10, col = 1) total <- rowSums(lung.deaths) text(loc, total + par("cxy")[2], total, cex = 0.7, xpd = TRUE) # S: if(interactive()) brush(hills) topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25) topo.mar <- list(x = seq(0, 6.5, 0.2), y=seq(0, 6.5, 0.2)) topo.lo <- predict(topo.loess, expand.grid(topo.mar)) par(pty = "s") # square plot contour(topo.mar$x, topo.mar$y, topo.lo, xlab = "", ylab = "", levels = seq(700,1000,25), cex = 0.7) points(topo$x, topo$y) par(pty = "m") topo.lo1 <- cbind(expand.grid(x=topo.mar$x, y=topo.mar$y), z=as.vector(topo.lo)) contourplot(z ~ x * y, topo.lo1, aspect = 1, at = seq(700, 1000, 25), xlab = "", ylab = "", panel = function(x, y, subscripts, ...) { panel.levelplot(x, y, subscripts, ...) panel.xyplot(topo$x,topo$y, cex = 0.5) } ) # see help(Skye) # ternary(Skye/100, ord = c(1, 3, 2)) # 4.3 Enhancing plots attach(wtloss) oldpar <- par(no.readonly = TRUE) # alter margin 4; others are default par(mar = c(5.1, 4.1, 4.1, 4.1)) plot(Days, Weight, type = "p", ylab = "Weight (kg)") Wt.lbs <- pretty(range(Weight*2.205)) axis(side = 4, at = Wt.lbs/2.205, lab = Wt.lbs, las = 0) mtext("Weight (lb)", side = 4, line = 3) detach() par(oldpar) x <- 0:100 plik <- function(lambda) sum(dpois(x, lambda) * 2 * ( (lambda - x) + x * log(pmax(1, x)/lambda))) lambda <- c(1e-8, 0.05, seq(0.1, 5, 0.1)) plot(lambda, sapply(lambda, plik), type = "l", ylim = c(0, 1.4), xlab = expression(lambda), ylab = expression(paste(E[lambda], "(deviance)"))) abline(h = 1, lty = 3) # 4.4 Fine control of graphics ## in R just use swiss # swiss <- data.frame(Fertility = swiss.fertility, swiss.x) attach(swiss) qqnorm(Infant.Mortality) qqline(Infant.Mortality) samp <- cbind(Infant.Mortality, matrix(rnorm(47*19), 47, 19)) samp <- apply(scale(samp), 2, sort) rs <- samp[, 1] xs <- qqnorm(rs, plot = FALSE)$x env <- t(apply(samp[, -1], 1, range)) matplot(xs, cbind(rs, env), type = "pnn", pch = 4, mkh = 0.06, axes = FALSE, xlab = "", ylab = "") xyul <- par("usr") smidge <- min(diff(c(xyul[1], xs, xyul[2])))/2 segments(xs - smidge, env[, 1], xs + smidge, env[, 1]) segments(xs - smidge, env[, 2], xs + smidge, env[, 2]) xul <- trunc(10*xyul[1:2])/10 axis(1, at=seq(xul[1], xul[2], by=0.1), labels = FALSE, tck=0.01) xi <- trunc(xyul[1:2]) axis(1, at = seq(xi[1], xi[2], by = 0.5), tck = 0.02) yul <- trunc(5*xyul[3:4])/5 axis(2, at=seq(yul[1], yul[2], by=0.2), labels = FALSE, tck=0.01) yi <- trunc(xyul[3:4]) axis(2, at = yi[1]:yi[2], tck = 0.02) box(bty = "l") # lower case "L" # ps.options()$fonts # R cannot change font family in a plot. mtext("Quantiles of Standard Normal", side=1, line=2.5, font=3) mtext(expression(R[i]), side = 2, line = 2, at = yul[2]) detach() # 4.5 Trellis graphics xyplot(time ~ dist, data = hills, panel = function(x, y, ...) { panel.xyplot(x, y, ...) panel.lmline(x, y, type = "l") panel.abline(lqs(y ~ x), lty = 3) # identify(x, y, row.names(hills)) } ) ## note: don't use separate title() call bwplot(Expt ~ Speed, data = michelson, ylab = "Experiment No.", main = "Speed of Light Data") splom(~ swiss, aspect = "fill", panel = function(x, y, ...) { panel.xyplot(x, y, ...); panel.loess(x, y, ...) } ) sps <- trellis.par.get("superpose.symbol") sps$pch <- 1:7 trellis.par.set("superpose.symbol", sps) xyplot(Time ~ Viscosity, data = stormer, groups = Wt, panel = panel.superpose, type = "b", key = list(columns = 3, text = list(paste(c("Weight: ", "", ""), unique(stormer$Wt), "gms")), points = Rows(sps, 1:3) ) ) rm(sps) topo.plt <- expand.grid(topo.mar) topo.plt$pred <- as.vector(predict(topo.loess, topo.plt)) levelplot(pred ~ x * y, topo.plt, aspect = 1, at = seq(690, 960, 10), xlab = "", ylab = "", panel = function(x, y, subscripts, ...) { panel.levelplot(x, y, subscripts, ...) panel.xyplot(topo$x,topo$y, cex = 0.5, col = 1) } ) wireframe(pred ~ x * y, topo.plt, aspect = c(1, 0.5), drape = TRUE, screen = list(z = -150, x = -60), colorkey = list(space="right", height=0.6)) lcrabs.pc <- predict(princomp(log(crabs[,4:8]))) crabs.grp <- c("B", "b", "O", "o")[rep(1:4, each = 50)] splom(~ lcrabs.pc[, 1:3], groups = crabs.grp, panel = panel.superpose, key = list(text = list(c("Blue male", "Blue female", "Orange Male", "Orange female")), points = Rows(trellis.par.get("superpose.symbol"), 1:4), columns = 4) ) sex <- crabs$sex levels(sex) <- c("Female", "Male") sp <- crabs$sp levels(sp) <- c("Blue", "Orange") splom(~ lcrabs.pc[, 1:3] | sp*sex, cex = 0.5, pscales = 0) Quine <- quine levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal") levels(Quine$Sex) <- c("Female", "Male") levels(Quine$Age) <- c("primary", "first form", "second form", "third form") levels(Quine$Lrn) <- c("Average learner", "Slow learner") bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine) bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, layout = c(4, 2), strip = function(...) strip.default(..., style = 1)) stripplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, jitter = TRUE, layout = c(4, 2)) stripplot(Age ~ Days | Eth*Sex, data = Quine, groups = Lrn, jitter = TRUE, panel = function(x, y, subscripts, jitter.data = FALSE, ...) { if(jitter.data) y <- jitter(as.numeric(y)) panel.superpose(x, y, subscripts, ...) }, xlab = "Days of absence", between = list(y = 1), par.strip.text = list(cex = 0.7), key = list(columns = 2, text = list(levels(Quine$Lrn)), points = Rows(trellis.par.get("superpose.symbol"), 1:2) ), strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE), style = 1) ) fgl0 <- fgl[ ,-10] # omit type. fgl.df <- data.frame(type = rep(fgl$type, 9), y = as.vector(as.matrix(fgl0)), meas = factor(rep(1:9, each = 214), labels = names(fgl0))) stripplot(type ~ y | meas, data = fgl.df, scales = list(x = "free"), xlab = "", cex = 0.5, strip = function(...) strip.default(style = 1, ...)) if(FALSE) { # no data supplied xyplot(ratio ~ scant | subject, data = A5, xlab = "scan interval (years)", ylab = "ventricle/brain volume normalized to 1 at start", subscripts = TRUE, ID = A5$ID, strip = function(factor, ...) strip.default(..., factor.levels = labs, style = 1), layout = c(8, 5, 1), skip = c(rep(FALSE, 37), rep(TRUE, 1), rep(FALSE, 1)), panel = function(x, y, subscripts, ID) { panel.xyplot(x, y, type = "b", cex = 0.5) which <- unique(ID[subscripts]) panel.xyplot(c(0, 1.5), pr3[names(pr3) == which], type = "l", lty = 3) if(which == 303 || which == 341) points(1.4, 1.3) }) } Cath <- equal.count(swiss$Catholic, number = 6, overlap = 0.25) xyplot(Fertility ~ Education | Cath, data = swiss, span = 1, layout = c(6, 1), aspect = 1, panel = function(x, y, span) { panel.xyplot(x, y); panel.loess(x, y, span) } ) Cath2 <- equal.count(swiss$Catholic, number = 2, overlap = 0) Agr <- equal.count(swiss$Agric, number = 3, overlap = 0.25) xyplot(Fertility ~ Education | Agr * Cath2, data = swiss, span = 1, aspect = "xy", panel = function(x, y, span) { panel.xyplot(x, y); panel.loess(x, y, span) } ) Cath levels(Cath) plot(Cath, aspect = 0.3) # End of ch04