R Under development (unstable) (2022-07-22 r82614) -- "Unsuffered Consequences" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # Check that a multi-state model, correctly set up, gives the same > # solution as a time-dependent covariate. > # This is a stronger test than mstrata: there the covariate which was mapped > # into a state was constant, here it is time-dependent. > # > # First build the TD data set from pbcseq, with a categorical bilirubin > pbc1 <- pbcseq > pbc1$bili4 <- cut(pbc1$bili, c(0,1, 2,4, 100), + c("normal", "1-2x", "2-4x", ">4")) > ptemp <- subset(pbc1, !duplicated(id)) # first row of each > > pbc2 <- tmerge(ptemp[, c("id", "age", "sex")], ptemp, id, + death= event(futime, status==2)) > > pbc2 <- tmerge(pbc2, pbc1, id=id, bili = tdc(day, bili), + bili4 = tdc(day, bili4), bstat = event(day, as.numeric(bili4))) > btemp <- with(pbc2, ifelse(death, 5, bstat)) > > # a row with the same starting and ending bili4 level is not an event > b2 <- ifelse(((as.numeric(pbc2$bili4)) == btemp), 0, btemp) > pbc2$bstat <- factor(b2, 0:5, + c("censor", "normal", "1-2x", "2-4x", ">4", "death")) > check1 <- survcheck(Surv(tstart, tstop, bstat) ~ 1, istate= bili4, + id = id, data=pbc2) > check1$transitions to from normal 1-2x 2-4x >4 death (censored) normal 0 81 10 3 9 77 1-2x 61 0 68 15 9 36 2-4x 2 33 0 94 12 24 >4 1 3 28 0 110 35 death 0 0 0 0 0 0 > all.equal(as.character(pbc2$bili4), as.character(check1$istate)) [1] TRUE > # the above verifies that I created the data set correctly > > # Standard coxph fit with a time dependent bili4 variable. > fit1 <- coxph(Surv(tstart, tstop, death) ~ age + bili4, pbc2) > > # An additive multi-state fit, where bili4 is a state > # The three forms below should all give identical models > fit2 <- coxph(list(Surv(tstart, tstop, bstat) ~ 1, + c(1:4):5 ~ age / common + shared), id= id, istate=bili4, + data=pbc2) > fit2b <- coxph(list(Surv(tstart, tstop, bstat) ~ 1, + 1:5 + 2:5 + 3:5 + 4:5 ~ age / common + shared), + id= id, istate=bili4, data=pbc2) > fit2c <- coxph(list(Surv(tstart, tstop, bstat) ~ 1, + 0:5 ~ age / common + shared), + id= id, istate=bili4, data=pbc2) > > # Make sure the names are correct and the coefficients match > aeq(coef(fit1), coef(fit2)) [1] TRUE > aeq(names(coef(fit2)), c("age", "ph(2:5/1:5)", "ph(3:5/1:5)", "ph(4:5/1:5)")) [1] TRUE > all.equal(coef(fit2), coef(fit2b)) [1] TRUE > all.equal(coef(fit2), coef(fit2c)) [1] TRUE > > # Now a model with a separate age effect for each bilirubin group > fit3 <- coxph(Surv(tstart, tstop, death) ~ age*bili4, pbc2) > fit3b <- coxph(Surv(tstart, tstop, death) ~ bili4/age, pbc2) > fit4 <- coxph(list(Surv(tstart, tstop, bstat) ~ 1, + c(1:4):5 ~ age / shared), id= id, istate=bili4, + data=pbc2) > all.equal(fit3$loglik, fit3b$loglik) [1] TRUE > all.equal(fit3$loglik, fit4$loglik) [1] TRUE > > # The coefficients are quite different due to different codings for dummy vars > # Unpack the interaction, first 4 coefs will be the age effect within each > # bilirubin group > temp <- c(coef(fit3)[1] + c(0, coef(fit3)[5:7]), coef(fit3)[2:4]) > names(temp)[1:4] <- c("age1", "age2", "age3", "age4") > aeq(temp, coef(fit3b)[c(4:7, 1:3)]) [1] TRUE > aeq(temp, coef(fit4)) [1] TRUE > > # Third, a model with separate baseline hazards for each bili group > fit5 <- coxph(Surv(tstart, tstop, death) ~ strata(bili4)/age, pbc2, + cluster=id) > fit6 <- coxph(list(Surv(tstart, tstop, bstat) ~ 1, 0:5 ~ age), + id=id, istate=bili4, pbc2) > aeq(coef(fit5), coef(fit6)) [1] TRUE > aeq(fit5$var, fit6$var) [1] TRUE > aeq(fit5$naive.var, fit6$naive.var) [1] TRUE > > proc.time() user system elapsed 1.281 0.096 1.369