R Under development (unstable) (2021-02-16 r80015) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test some more features of surv.diff > # > # First, what happens when one group is a dummy > # > > > # > # The AML data, with a third group of early censorings "tacked on" > # > aml3 <- list(time= c( 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, + 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45, + 1, 2, 2, 3, 3, 3, 4), + status= c( 1,1,0,1,1,0,1,1,0,1,0, 1,1,1,1,1,0,1,1,1,1,1,1, + 0,0,0,0,0,0,0), + x = as.factor(c(rep("Maintained", 11), + rep("Nonmaintained", 12), rep("Dummy",7) ))) > > aml3 <- data.frame(aml3) > > # These should give the same result (chisq, df), but the second has an > # extra group > survdiff(Surv(time, status) ~x, aml) Call: survdiff(formula = Surv(time, status) ~ x, data = aml) N Observed Expected (O-E)^2/E (O-E)^2/V x=Maintained 11 7 10.69 1.27 3.4 x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.07 > survdiff(Surv(time, status) ~x, aml3) Call: survdiff(formula = Surv(time, status) ~ x, data = aml3) N Observed Expected (O-E)^2/E (O-E)^2/V x=Dummy 7 0 0.00 NaN NaN x=Maintained 11 7 10.69 1.27 3.4 x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.07 > > > # > # Now a test of the stratified log-rank > # There are no tied times within institution, so the coxph program > # can be used to give a complete test > # > fit <- survdiff(Surv(time, status) ~ pat.karno + strata(inst), lung) > > cfit <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst), + lung, iter=0) > > tdata <- na.omit(lung[,c('time', 'status', 'pat.karno', 'inst')]) > > temp1 <- tapply(tdata$status-1, list(tdata$pat.karno, tdata$inst), sum) > temp1 <- ifelse(is.na(temp1), 0, temp1) > temp2 <- tapply(cfit$resid, list(tdata$pat.karno, tdata$inst), sum) > temp2 <- ifelse(is.na(temp2), 0, temp2) > > temp2 <- temp1 - temp2 > > #Now temp1=observed, temp2=expected > all.equal(c(temp1), c(fit$obs)) [1] TRUE > all.equal(c(temp2), c(fit$exp)) [1] TRUE > > all.equal(fit$var[-1,-1], solve(cfit$var)) [1] TRUE > > rm(tdata, temp1, temp2) > > proc.time() user system elapsed 0.827 0.047 0.867