R version 3.5.2 Patched (2019-01-14 r75994) -- "Eggshell Igloo"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(nlme)
> 
> options(digits = 6)# <==> less platform dependency in print() output
> if(!dev.interactive(orNone=TRUE)) pdf("test_lme.pdf")
> 
> fm1 <- lmList(Oxboys)
> fm1
Call:
  Model: height ~ age | Subject 
   Data: Oxboys 

Coefficients:
   (Intercept)     age
10     130.262 3.72291
26     137.993 5.58878
25     139.210 4.02408
9      138.137 6.00906
2      142.858 5.44018
6      146.791 3.96317
7      146.128 4.99005
17     142.978 8.61178
16     147.545 4.54520
15     144.276 7.12426
8      148.293 6.46471
20     151.471 4.37447
1      148.120 7.17815
18     151.180 5.95779
5      151.429 6.24613
23     151.065 7.18512
11     150.047 8.50608
21     150.521 7.49779
3      155.651 4.77467
24     153.140 6.76470
22     154.567 8.08751
12     156.811 7.01547
13     156.071 8.49381
14     159.474 8.67089
19     164.576 9.06562
4      165.072 9.36056

Degrees of freedom: 234 total; 182 residual
Residual standard error: 0.659888
> fm2 <- lme(fm1)
> fm2
Linear mixed-effects model fit by REML
  Data: Oxboys 
  Log-restricted-likelihood: -362.045
  Fixed: height ~ age 
(Intercept)         age 
  149.37175     6.52547 

Random effects:
 Formula: ~age | Subject
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev   Corr  
(Intercept) 8.081077 (Intr)
age         1.680717 0.641 
Residual    0.659889       

Number of Observations: 234
Number of Groups: 26 
> vc2 <- VarCorr(fm2)
> stopifnot(
+     all.equal(fixef(fm2), c("(Intercept)" = 149.371753,
+                             age = 6.52546866), tol=1e-8),
+     all.equal(as.numeric(vc2[,"StdDev"]),
+               c(8.081077, 1.680717, 0.659889), tol=4e-7))
> 
> # bug report from Arne.Mueller@sanofi-aventis.com
> mod <- distance ~ age + Sex
> fm3 <- lme(mod, Orthodont, random = ~ 1)
> pm3 <- predict(fm3, Orthodont)
> stopifnot(all.equal(mean(pm3), 24.023148148),
+ 	  all.equal(  sd(pm3), 2.4802195115),
+ 	  all.equal(quantile(pm3), c("0%"  = 17.0817792, "25%" = 22.3481813,
+ 				     "50%" = 23.9271016, "75%" = 25.5740014,
+ 				     "100%"= 30.8662241)))
> 
> 
> ## bug report and fix from Dimitris Rizopoulos and Spencer Graves:
> ## when 'returnObject = TRUE', do not stop() but give warning() on non-convergence:
> tools::assertWarning(
+ fm1 <- lme(distance ~ age, data = Orthodont,
+ 	   control = lmeControl(msMaxIter = 1, returnObject = TRUE))
+ )
> 
> ## "typo" in 'random=' -- giving 27-dim. vector random effect:
> ## PR#17524 B.Tyner: https://bugs.r-project.org/show_bug.cgi?id=17524
>                try(lme(distance ~ 1,   data=Orthodont, random = ~ Subject))
Error in lme.formula(distance ~ 1, data = Orthodont, random = ~Subject) : 
  fewer observations than random effects in all level 1 groups
> tools::assertError(lme(distance ~ age, data=Orthodont, random = ~ Subject))
> ## seg.faults in nlme <= 3.1-137 (2018) because of integer overflow
> ## The previous warning is now an *error* (unless new lmeControl(allow.n.lt.q=TRUE))
> 
> 
> ## based on bug report on R-help
> (p3.1 <- predict(fm3, Orthodont[1,]))
    M01 
25.3924 
attr(,"label")
[1] "Predicted values (mm)"
> # failed in 3.1-88
> stopifnot(all.equal(pm3[1], p3.1,
+ 		    check.attributes=FALSE, tolerance = 1e-14))
> 
> ## Intervals failed in a patch proposal (Nov.2015):
> (fm4 <- lme(distance ~ age, Orthodont, random = ~ age | Subject))
Linear mixed-effects model fit by REML
  Data: Orthodont 
  Log-restricted-likelihood: -221.318
  Fixed: distance ~ age 
(Intercept)         age 
  16.761111    0.660185 

Random effects:
 Formula: ~age | Subject
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev   Corr  
(Intercept) 2.327034 (Intr)
age         0.226428 -0.609
Residual    1.310040       

Number of Observations: 108
Number of Groups: 27 
> i4 <- intervals(fm4)
> ## from  dput(signif(i4$reStruct$Subject, 8))
> ## R-devel 2016-01-11; 64-bit :
> reSS <- data.frame(lower = c(0.9485605, 0.10250901, -0.93825047),
+                    est.  = c(2.3270341, 0.22642779, -0.60933286),
+                    upper = c(5.7087424, 0.50014674,  0.29816857))
> ## R-devel 2016-01-11; 32-bit :
> ## reSS <- data.frame(lower = c(0.94962127,0.10262181, -0.93804767),
> ##                    est.  = c(2.3270339, 0.22642779, -0.60933284),
> ##                    upper = c(5.7023648, 0.49959695,  0.29662651))
> rownames(reSS) <- rownames(i4$reStruct$Subject)
> sm4 <- summary(fm4)
> stopifnot(
+     all.equal(fixef(fm4),
+               c("(Intercept)" = 16.761111, age = 0.66018519)),
+     identical(fixef(fm4), sm4$tTable[,"Value"]),
+     all.equal(sm4$tTable[,"Std.Error"],
+               c("(Intercept)" = 0.77524603, age = 0.071253264), tol=6e-8),
+     all.equal(i4$reStruct$Subject[,"est."], reSS[,"est."], tol= 1e-7)
+     ## (lower, upper) cannot be very accurate for these : ==> tol = *e-4
+    ,## "interestingly" 32-bit values changed from 3.2.3 to R-devel(3.3.0):
+     all.equal(i4$reStruct$Subject[,c(1,3)], reSS[,c(1,3)], tol = .005)
+    ,
+     all.equal(as.vector(i4$sigma),
+               ##  lower     est.        upper
+               c(1.0849772, 1.3100397, 1.5817881), tol=8e-4)
+    ,
+     all.equal(as.vector(i4$fixed),
+               as.vector(rbind(c(15.218322, 16.761111, 18.3039),
+                               c(0.51838667, 0.66018519, 0.8019837))),
+               tol = 1e-6)
+ )
> 
> 
> ## wrong results from getData:
> ss2 <- readRDS("ss2.rds")
> m1 <- lme(PV1MATH ~  ESCS + Age +time ,
+           random = ~   time|SCHOOLID,
+           data = ss2,
+           weights = varIdent(form=~1|time),
+           corr = corCompSymm(form=~1|SCHOOLID/StIDStd),
+           na.action = na.omit)
> plot(m1, resid(.) ~ WEALTH)
> 
> m2 <- lme(PV1MATH ~  ESCS + Age +time ,
+           random = ~   time|SCHOOLID,
+           data = ss2,
+           weights = varIdent(form=~1|time),
+           corr = corCompSymm(form=~1|SCHOOLID/StIDStd),
+           na.action = na.omit)
> plot(m2, resid(.) ~ WEALTH)
> 
> 
> ## Variogram() failing in the case of  1-observation groups (PR#17192):
> BW <- subset(BodyWeight, ! (Rat=="1" & Time > 1))
> if(interactive())
+     print( xtabs(~ Rat + Time, data = BW) )# Rat '1' only at Time == 1
> fm2 <- lme(fixed = weight ~ Time * Diet, random = ~ 1 | Rat, data = BW)
> Vfm2 <- Variogram(fm2, form = ~ Time | Rat)
> stopifnot(is.data.frame(Vfm2),
+ 	  identical(dim(Vfm2), c(19L, 3L)),
+ 	  all.equal(unlist(Vfm2[10,]), c(variog = 1.08575384191148,
+ 					 dist = 22, n.pairs = 15))
+ 	  )
> ## failed in nlme from 3.1-122 till 3.1-128
> 
> proc.time()
   user  system elapsed 
  1.376   0.138   1.653