#-*- R -*- ## Script from Fourth Edition of `Modern Applied Statistics with S' # Chapter 10 Random and Mixed Effects library(MASS) library(lattice) pdf(file="ch10.pdf", width=8, height=6, pointsize=9) options(width=65, digits=5) library(nlme) # 10.1 Linear models xyplot(Y ~ EP | No, data = petrol, xlab = "ASTM end point (deg. F)", ylab = "Yield as a percent of crude", panel = function(x, y) { panel.grid() m <- sort.list(x) panel.xyplot(x[m], y[m], type = "b", cex = 0.5) }) Petrol <- petrol names(Petrol) Petrol[, 2:5] <- scale(Petrol[, 2:5], scale = FALSE) pet1.lm <- lm(Y ~ No/EP - 1, Petrol) matrix(round(coef(pet1.lm), 2), 2, 10, byrow = TRUE, dimnames = list(c("b0", "b1"), levels(Petrol$No))) pet2.lm <- lm(Y ~ No - 1 + EP, Petrol) anova(pet2.lm, pet1.lm) pet3.lm <- lm(Y ~ SG + VP + V10 + EP, Petrol) anova(pet3.lm, pet2.lm) pet3.lme <- lme(Y ~ SG + VP + V10 + EP, random = ~ 1 | No, data = Petrol) summary(pet3.lme) pet3.lme <- update(pet3.lme, method = "ML") summary(pet3.lme) anova(pet3.lme, pet3.lm) pet4.lme <- update(pet3.lme, fixed = Y ~ V10 + EP) anova(pet4.lme, pet3.lme) fixed.effects(pet4.lme) coef(pet4.lme) pet5.lme <- update(pet4.lme, random = ~ 1 + EP | No) anova(pet4.lme, pet5.lme) nl1 <- nlschools attach(nl1) classMeans <- tapply(IQ, class, mean) nl1$IQave <- classMeans[as.character(class)] detach() cen <- c("IQ", "IQave", "SES") nl1[cen] <- scale(nl1[cen], center = TRUE, scale = FALSE) options(contrasts = c("contr.treatment", "contr.poly")) nl.lme <- lme(lang ~ IQ*COMB + IQave + SES, random = ~ IQ | class, data = nl1) summary(nl.lme) ## singular.ok = TRUE is the default in R summary(lm(lang ~ IQ*COMB + SES + class, data = nl1, singular.ok = TRUE)) nl2 <- cbind(aggregate(nl1[c(1,7)], list(class = nl1$class), mean), unique(nl1[c("class", "COMB", "GS")])) summary(lm(lang ~ IQave + COMB, data = nl2, weights = GS)) sitka.lme <- lme(size ~ treat*ordered(Time), random = ~1 | tree, data = Sitka, method = "ML") Sitka <- Sitka # make a local copy for S-PLUS attach(Sitka) Sitka$treatslope <- Time * (treat == "ozone") detach() sitka.lme2 <- update(sitka.lme, fixed = size ~ ordered(Time) + treat + treatslope) anova(sitka.lme, sitka.lme2) # fitted curves matrix(fitted(sitka.lme2, level = 0)[c(301:305, 1:5)], 2, 5, byrow = TRUE, dimnames = list(c("control", "ozone"), unique(Sitka$Time))) # 10.2 Classic nested designs if(FALSE) { summary(raov(Conc ~ Lab/Bat, data = coop, subset = Spc=="S1")) is.random(coop) <- T is.random(coop$Spc) <- F is.random(coop) varcomp(Conc ~ Lab/Bat, data = coop, subset = Spc=="S1") varcomp(Conc ~ Lab/Bat, data = coop, subset = Spc=="S1", method = c("winsor", "minque0")) } #oats <- oats # make a local copy: needed in S-PLUS oats$Nf <- ordered(oats$N, levels = sort(levels(oats$N))) oats.aov <- aov(Y ~ Nf*V + Error(B/V), data = oats, qr = TRUE) summary(oats.aov) summary(oats.aov, split = list(Nf = list(L = 1, Dev = 2:3))) plot(fitted(oats.aov[[4]]), studres(oats.aov[[4]])) abline(h = 0, lty = 2) oats.pr <- proj(oats.aov) qqnorm(oats.pr[[4]][,"Residuals"], ylab = "Stratum 4 residuals") qqline(oats.pr[[4]][,"Residuals"]) oats.aov <- aov(Y ~ N + V + Error(B/V), data = oats, qr = TRUE) model.tables(oats.aov, type = "means", se = TRUE) # we can get the unimplemented standard errors from se.contrast(oats.aov, list(N == "0.0cwt", N == "0.2cwt"), data=oats) se.contrast(oats.aov, list(V == "Golden.rain", V == "Victory"), data=oats) # is.random(oats$B) <- T # varcomp(Y ~ N + V + B/V, data = oats) lme(Conc ~ 1, random = ~1 | Lab/Bat, data = coop, subset = Spc=="S1") options(contrasts = c("contr.treatment", "contr.poly")) summary(lme(Y ~ N + V, random = ~1 | B/V, data = oats)) # 10.3 Non-linear mixed effects models options(contrasts = c("contr.treatment", "contr.poly")) sitka.nlme <- nlme(size ~ A + B * (1 - exp(-(Time-100)/C)), fixed = list(A ~ treat, B ~ treat, C ~ 1), random = A + B ~ 1 | tree, data = Sitka, start = list(fixed = c(2, 0, 4, 0, 100)), verbose = TRUE) summary(sitka.nlme) summary(update(sitka.nlme, corr = corCAR1(0.95, ~Time | tree))) Fpl <- deriv(~ A + (B-A)/(1 + exp((log(d) - ld50)/th)), c("A","B","ld50","th"), function(d, A, B, ld50, th) {}) st <- coef(nls(BPchange ~ Fpl(Dose, A, B, ld50, th), start = c(A = 25, B = 0, ld50 = 4, th = 0.25), data = Rabbit)) Rc.nlme <- nlme(BPchange ~ Fpl(Dose, A, B, ld50, th), fixed = list(A ~ 1, B ~ 1, ld50 ~ 1, th ~ 1), random = A + ld50 ~ 1 | Animal, data = Rabbit, subset = Treatment == "Control", start = list(fixed = st)) ## The next fails on some R platforms and some versions of nlme ## Rm.nlme <- update(Rc.nlme, subset = Treatment=="MDL") ## so update starting values st <- coef(nls(BPchange ~ Fpl(Dose, A, B, ld50, th), start = c(A = 25, B = 0, ld50 = 4, th = 0.25), data = Rabbit, subset = Treatment == "MDL")) Rm.nlme <- update(Rc.nlme, subset = Treatment=="MDL", start = list(fixed = st)) Rc.nlme Rm.nlme c1 <- c(28, 1.6, 4.1, 0.27, 0) R.nlme1 <- nlme(BPchange ~ Fpl(Dose, A, B, ld50, th), fixed = list(A ~ Treatment, B ~ Treatment, ld50 ~ Treatment, th ~ Treatment), random = A + ld50 ~ 1 | Animal/Run, data = Rabbit, start = list(fixed = c1[c(1, 5, 2, 5, 3, 5, 4, 5)])) summary(R.nlme1) R.nlme2 <- update(R.nlme1, fixed = list(A ~ 1, B ~ 1, ld50 ~ Treatment, th ~ 1), start = list(fixed = c1[c(1:3, 5, 4)])) anova(R.nlme2, R.nlme1) summary(R.nlme2) xyplot(BPchange ~ log(Dose) | Animal * Treatment, Rabbit, xlab = "log(Dose) of Phenylbiguanide", ylab = "Change in blood pressure (mm Hg)", subscripts = TRUE, aspect = "xy", panel = function(x, y, subscripts) { panel.grid() panel.xyplot(x, y) sp <- spline(x, fitted(R.nlme2)[subscripts]) panel.xyplot(sp$x, sp$y, type = "l") }) # 10.4 Generalized linear mixed models contrasts(bacteria$trt) <- structure(contr.sdif(3), dimnames = list(NULL, c("drug", "encourage"))) summary(glm(y ~ trt * week, binomial, data = bacteria)) summary(glm(y ~ trt + week, binomial, data = bacteria)) summary(glm(y ~ lbase*trt + lage + V4, family = poisson, data = epil)) epil2 <- epil[epil$period == 1, ] epil2["period"] <- rep(0, 59); epil2["y"] <- epil2["base"] epil["time"] <- 1; epil2["time"] <- 4 epil2 <- rbind(epil, epil2) epil2$pred <- unclass(epil2$trt) * (epil2$period > 0) epil2$subject <- factor(epil2$subject) epil3 <- aggregate(epil2, list(epil2$subject, epil2$period > 0), function(x) if(is.numeric(x)) sum(x) else x[1]) epil3$pred <- factor(epil3$pred, labels = c("base", "placebo", "drug")) contrasts(epil3$pred) <- structure(contr.sdif(3), dimnames = list(NULL, c("placebo-base", "drug-placebo"))) summary(glm(y ~ pred + factor(subject) + offset(log(time)), family = poisson, data = epil3)) glm(y ~ factor(subject), family = poisson, data = epil) library(survival) bacteria$Time <- rep(1, nrow(bacteria)) coxph(Surv(Time, unclass(y)) ~ week + strata(ID), data = bacteria, method = "exact") coxph(Surv(Time, unclass(y)) ~ factor(week) + strata(ID), data = bacteria, method = "exact") coxph(Surv(Time, unclass(y)) ~ I(week > 2) + strata(ID), data = bacteria, method = "exact") fit <- glm(y ~ trt + I(week> 2), binomial, data = bacteria) summary(fit) sum(residuals(fit, type = "pearson")^2) if(FALSE) { # slow ## package available from http://www.stats.ox.ac.uk/pub/RWin ## but these examples fail library(GLMMGibbs) # declare a random intercept for each subject epil$subject <- Ra(data = factor(epil$subject)) glmm(y ~ lbase*trt + lage + V4 + subject, family = poisson, data = epil, keep = 100000, thin = 100) epil3$subject <- Ra(data = factor(epil3$subject)) glmm(y ~ pred + subject, family = poisson, data = epil3, keep = 100000, thin = 100) } summary(glmmPQL(y ~ trt + I(week> 2), random = ~ 1 | ID, family = binomial, data = bacteria)) summary(glmmPQL(y ~ lbase*trt + lage + V4, random = ~ 1 | subject, family = poisson, data = epil)) summary(glmmPQL(y ~ pred, random = ~1 | subject, family = poisson, data = epil3)) # 10.5 GEE models ## modified for YAGS >= 3.21-3 ## package available from http://www.stats.ox.ac.uk/pub/RWin if(require(yags)) { print(yags(y == "y" ~ trt + I(week > 2), family = binomial, alphainit=0, id = ID, corstr = "exchangeable", data = bacteria)) print(yags(y ~ lbase*trt + lage + V4, family = poisson, alphainit=0, id = subject, corstr = "exchangeable", data = epil)) } options(contrasts = c("contr.sum", "contr.poly")) library(gee) summary(gee(y ~ pred + factor(subject), family = poisson, id = subject, data = epil3, corstr = "exchangeable")) # End of ch10