library(nlme) if (requireNamespace("MASS")) { ## Example 1 --- was ./update.R --- data(petrol, package = 'MASS') Petrol <- petrol Petrol[, 2:5] <- scale(Petrol[, 2:5], scale = FALSE) pet3.lme <- lme(Y ~ SG + VP + V10 + EP, random = ~ 1 | No, data = Petrol, method="ML") upet3 <- update(pet3.lme, Y ~ SG + VP + V10) upet3 vc3 <- VarCorr(upet3) upet2 <- lme(Y ~ SG + VP + V10, random = ~ 1 | No, data = Petrol, method = "ML") stopifnot( all.equal(upet3, upet2, tol = 1e-15) , all.equal(fixef(upet3), c("(Intercept)" = 19.659375, SG = 0.125045632, VP = 2.27818601, V10 = 0.0672413592), tol = 1e-8)# 1e-9 , all.equal(as.numeric(vc3[,"StdDev"]), c(0.00029397, 9.69657845), tol=1e-6) ) } ## Example 2 --- data(Assay) as1 <- lme(logDens~sample*dilut, data=Assay, random=pdBlocked(list( pdIdent(~1), pdIdent(~sample-1), pdIdent(~dilut-1)))) as1s <- update(as1, random=pdCompSymm(~sample-1)) (an.1s <- anova(as1, as1s)) # non significant stopifnot( all.equal(drop(data.matrix(an.1s[2,-1])), c(Model = 2, df = 33, AIC = -10.958851, BIC = 35.280663, logLik = 38.479425, Test = 2, L.Ratio = 0.11370211, `p-value` = 0.73596807), tol=8e-8)) as1S <- update(as1, . ~ sample+dilut) # dropping FE interaction tools::assertWarning(anova(as1, as1S))# REML not ok for different FE. as1M <- update(as1, method = "ML") as1SM <- update(as1S, method = "ML") (anM <- anova(as1M, as1SM)) # anova() OK: comparing MLE fits ## ==> significant: P ~= 0.0054 stopifnot( all.equal(drop(data.matrix(anM[2,])[,-(1:2)]), c(df = 14, AIC = -169.588248, BIC = -140.267424, logLik = 98.7941241, Test = 2, L.Ratio = 39.7345188, `p-value` = 0.0053958561), tol = 8e-8) )