R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # Make sure that the old-style and new-style calls both work > > # new style > vet2 <- survSplit(Surv(time, status) ~ ., data= veteran, cut=c(90, 180), + episode= "tgroup", id="id") > vet2[1:7, c("id", "tstart", "time", "status", "tgroup", "age", "karno")] id tstart time status tgroup age karno 1 1 0 72 1 1 69 60 2 2 0 90 0 1 64 70 3 2 90 180 0 2 64 70 4 2 180 411 1 3 64 70 5 3 0 90 0 1 38 60 6 3 90 180 0 2 38 60 7 3 180 228 1 3 38 60 > > # old style > vet3 <- survSplit(veteran, end='time', event='status', cut=c(90,180), + episode="tgroup", id="id") > all.equal(vet2, vet3) [1] TRUE > > all.equal(nrow(vet2), nrow(veteran) + sum(veteran$time >90) + + sum(veteran$time > 180)) [1] TRUE > > > # Do a parallel computation using survSplit, and pyears/tcut. We should get > # the same answer. > # Break subjects up by year of entry and current time on study. Most of > # the deaths are within 3 months > # pyears complains (justifiably) about the obs with 0 days of fu, so we add 1 > # > data1 <- jasa > data1$ayear <- as.numeric(substring(as.character(jasa$accept.dt), 1,4)) > temp <- round(c(0, .25, 1,2,5)*365.25) # years > ftime <- tcut(rep(0, nrow(jasa)), temp, + labels=paste(c(0, .25, 1:2), c(.25, 1,2,5), sep='-')) > pfit <- pyears(Surv(futime +1,fustat) ~ ayear + ftime, data1, + scale=1) > > data2 <- survSplit(Surv(futime+1, fustat) ~ ., cut=temp, data=data1, + episode = "tgroup") > > tab1 <- with(data2, tapply(fustat, list(ayear, tgroup), sum)) > tab1 <- ifelse(is.na(tab1), 0, tab1) > > all.equal(as.vector(tab1), as.vector(pfit$event)) # ignore dimnames [1] TRUE > > tab2 <- with(data2, tapply(tstop-tstart, list(ayear, tgroup), sum)) > tab2 <- ifelse(is.na(tab2), 0, tab2) > > all.equal(as.vector(tab2), as.vector(pfit$pyears)) [1] TRUE > > # double check that the "data" option gives the same values > pfit2 <- pyears(Surv(futime +1,fustat) ~ ayear + ftime, data1, + scale=1, data.frame=TRUE)$data > all.equal(pfit2$pyears, pfit$pyears[pfit$pyears >0]) [1] TRUE > all.equal(pfit2$event, pfit$event[pfit$pyears >0]) [1] TRUE > > # and that the rows of data2 have the right labels > keep <- which(pfit$pyears >0) # these are not in the data > rname <- rownames(pfit$pyears)[row(pfit$pyears)[keep]] > all.equal(rname, as.character(pfit2$ayear)) [1] TRUE > > cname <- colnames(pfit$pyears)[col(pfit$pyears)[keep]] > all.equal(cname, as.character(pfit2$ftime)) [1] TRUE > > > > proc.time() user system elapsed 0.764 0.032 0.805