library(ggplot2) library(lattice) ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3")) values <- data.frame( id = ids, value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5) ) positions <- data.frame( id = rep(ids, each = 4), x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3, 0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3), y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5, 2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2) ) huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron)) ggplot2_examples <- list( GeomPointColor = { ggplot(mtcars, aes(wt, mpg, color = cyl)) + geom_point() }, GeomAbline = { ggplot(mtcars, aes(mpg, wt)) + geom_point() + geom_hline(aes(yintercept = wt), data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00))) + facet_wrap(~ cyl) }, GeomBar = ggplot(mpg, aes(class)) + geom_bar(aes(weight = displ)), GeomBin2d = ggplot(diamonds, aes(x, y)) + xlim(4, 10) + ylim(4, 10) + geom_bin2d(), GeomBox = ggplot(mpg, aes(class, hwy)) + geom_boxplot(), GeomContour = ggplot(faithfuld, aes(waiting, eruptions, z = density)) + geom_contour(), GeomContourRaster = ggplot(faithfuld, aes(waiting, eruptions, z = density)) + geom_raster(aes(fill = density)) + geom_contour(), GeomCount = ggplot(mpg, aes(cty, hwy)) + geom_count(), GeomDensity = ggplot(diamonds, aes(carat)) + geom_density(), GeomDensityColor = ggplot(diamonds, aes(depth, fill = cut, colour = cut)) + geom_density(alpha = 0.1), GeomDotPlot = ggplot(mtcars, aes(x = mpg)) + geom_dotplot(), GeomError = { ggplot(data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), se = c(0.1, 0.3, 0.3, 0.2) ), aes(resp, trt, colour = group)) + geom_point() + geom_errorbarh(aes(xmax = resp + se, xmin = resp - se)) }, GeomHex = ggplot(diamonds, aes(carat, price)) + geom_hex(binwidth = c(.1, 500)), GeomHistogram = ggplot(diamonds, aes(price, fill = cut)) + geom_histogram(binwidth = 500), GeomJitter = ggplot(mpg, aes(cyl, hwy)) + geom_jitter(width = 0.25), GeomErrorbar = ggplot(data.frame( trt = factor(c(1, 1, 2, 2)), resp = c(1, 5, 3, 4), group = factor(c(1, 2, 1, 2)), upper = c(1.1, 5.3, 3.3, 4.2), lower = c(0.8, 4.6, 2.4, 3.6) ), aes(trt, resp, fill = group)) + geom_col(position = position_dodge(width = 0.9)) + geom_errorbar(aes(ymin = lower, ymax = upper), position = position_dodge(width = 0.9), width = 0.25), GeomPolygon = ggplot(values) + geom_map(aes(map_id = id), map = positions) + expand_limits(positions), GeomPolygon2 = ggplot(values, aes(fill = value)) + geom_map(aes(map_id = id), map = positions) + expand_limits(positions), GeomLine = ggplot(economics_long, aes(date, value01, group = variable)) + geom_line(), GeomLine2 = ggplot(economics_long, aes(date, value01, colour = variable)) + geom_line(), GeomPoint = ggplot(diamonds, aes(carat, price)) + geom_point(alpha = 1/50), GeomPoint2 = ggplot(mtcars, aes(wt, mpg, color = factor(cyl), shape = factor(cyl))) + geom_point(), GeomQuantile = ggplot(mpg, aes(displ, 1 / hwy)) + geom_point() + geom_quantile(), GeomRibbon = ggplot(huron, aes(year)) + geom_ribbon(aes(ymin = level - 1, ymax = level + 1), fill = "grey70") + geom_line(aes(y = level)), GeomRug = ggplot(mtcars, aes(wt, mpg)) + geom_point() + geom_rug(), GeomRug2 = ggplot(mtcars, aes(wt, mpg)) + geom_point() + geom_rug(outside = TRUE) + coord_cartesian(clip = "off"), GeomCurve = { df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0) ggplot(mtcars, aes(wt, mpg)) + geom_point() + geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "curve"), data = df) + geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "segment"), data = df) + geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2), data = df, curvature = -0.2) }, GeomSmooth = ggplot(diamonds[sample(nrow(diamonds), 1000), ], aes(carat, price)) + geom_point(alpha = 0.2) + geom_smooth() + facet_wrap(~cut) + ggtitle("Diamond price by carat and cut"), GeomSmooth2 = ggplot(mpg, aes(displ, hwy, colour = class)) + geom_point() + geom_smooth(se = FALSE, method = lm), GeomSpoke = { df <- expand.grid(x = 1:10, y=1:10) df$angle <- runif(100, 0, 2*pi) df$speed <- runif(100, 0, sqrt(0.1 * df$x)) ggplot(df, aes(x, y)) + geom_point() + geom_spoke(aes(angle = angle), radius = 0.5) }, GeomText = ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) + geom_text(), GeomLabel = ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) + geom_label(), GeomTile = ggplot(data.frame( x = rep(c(2, 5, 7, 9, 12), 2), y = rep(c(1, 2), each = 5), z = factor(rep(1:5, each = 2)), w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2) ), aes(x, y, width = w)) + geom_tile(aes(fill = z)), GeomViolin = ggplot(mtcars, aes(factor(cyl), mpg)) + geom_violin() ) lattice_examples <- list( settings = quote(show.settings()), densityplot = quote(densityplot(~mpg, data=mtcars, group=factor(mtcars$am, levels=c(0, 1), labels=c("Automatic", "Manual")), main="MPG Distribution by Transmission Type", xlab="Miles per Gallon", auto.key=TRUE)) ) base_examples <- list( scatterplot = quote(plot(iris$Sepal.Length, iris$Sepal.Width, col = iris$Species, main = "Sepal Length vs Width in Iris")), hist = quote(hist(iris$Sepal.Length)) )