#-*- R -*- ## Script from Fourth Edition of `Modern Applied Statistics with S' # Chapter 16 Optimization and Mazimum Likelihood Estimation library(MASS) pdf(file="ch16.pdf", width=8, height=8, pointsize=9) options(width=65, digits=5) # 16.3 General optimization attach(geyser) truehist(waiting, xlim = c(35, 110), ymax = 0.04, h = 5) wait.dns <- density(waiting, n = 512, width = "SJ") lines(wait.dns, lty = 2) lmix2 <- deriv3( ~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2), c("p", "u1", "s1", "u2", "s2"), function(x, p, u1, s1, u2, s2) NULL) (p0 <- c(p = mean(waiting < 70), u1 = 50, s1 = 5, u2 = 80, s2 = 5)) ## using optim mix.obj <- function(p, x) { e <- p[1] * dnorm((x - p[2])/p[3])/p[3] + (1 - p[1]) * dnorm((x - p[4])/p[5])/p[5] if(any(e <= 0)) Inf else -sum(log(e)) } optim(p0, mix.obj, x = waiting)$par # Nelder-Mead optim(p0, mix.obj, x = waiting, method = "BFGS", control = list(parscale= c(0.1, rep(1, 4))))$par # with derivatives lmix2a <- deriv( ~ -log(p*dnorm((x-u1)/s1)/s1 + (1-p)*dnorm((x-u2)/s2)/s2), c("p", "u1", "s1", "u2", "s2"), function(x, p, u1, s1, u2, s2) NULL) mix.gr <- function(p, x) { u1 <- p[2]; s1 <- p[3]; u2 <- p[4]; s2 <- p[5]; p <- p[1] colSums(attr(lmix2a(x, p, u1, s1, u2, s2), "gradient")) } optim(p0, mix.obj, mix.gr, x = waiting, method = "BFGS", control = list(parscale= c(0.1, rep(1, 4))))$par mix.nl0 <- optim(p0, mix.obj, mix.gr, method = "L-BFGS-B", hessian = TRUE, lower = c(0, -Inf, 0, -Inf, 0), upper = c(1, rep(Inf, 4)), x = waiting) rbind(est = mix.nl0$par, se = sqrt(diag(solve(mix.nl0$hessian)))) dmix2 <- function(x, p, u1, s1, u2, s2) p * dnorm(x, u1, s1) + (1-p) * dnorm(x, u2, s2) attach(as.list(mix.nl0$par)) wait.fdns <- list(x = wait.dns$x, y = dmix2(wait.dns$x, p, u1, s1, u2, s2)) lines(wait.fdns) par(usr = c(0, 1, 0, 1)) legend(0.1, 0.9, c("Normal mixture", "Nonparametric"), lty = c(1, 2), bty = "n") pmix2 <- deriv(~ p*pnorm((x-u1)/s1) + (1-p)*pnorm((x-u2)/s2), "x", function(x, p, u1, s1, u2, s2) {}) pr0 <- (seq(along = waiting) - 0.5)/length(waiting) x0 <- x1 <- as.vector(sort(waiting)) ; del <- 1; i <- 0 while((i <- 1 + 1) < 10 && abs(del) > 0.0005) { pr <- pmix2(x0, p, u1, s1, u2, s2) del <- (pr - pr0)/attr(pr, "gradient") x0 <- x0 - 0.5*del cat(format(del <- max(abs(del))), "\n") } detach() par(pty = "s") plot(x0, x1, xlim = range(x0, x1), ylim = range(x0, x1), xlab = "Model quantiles", ylab = "Waiting time") abline(0, 1) par(pty = "m") mix1.obj <- function(p, x, y) { q <- exp(p[1] + p[2]*y) q <- q/(1 + q) e <- q * dnorm((x - p[3])/p[4])/p[4] + (1 - q) * dnorm((x - p[5])/p[6])/p[6] if(any(e <= 0)) Inf else -sum(log(e)) } p1 <- mix.nl0$par; tmp <- as.vector(p1[1]) p2 <- c(a = log(tmp/(1-tmp)), b = 0, p1[-1]) mix.nl1 <- optim(p2, mix1.obj, method = "L-BFGS-B", lower = c(-Inf, -Inf, -Inf, 0, -Inf, 0), upper = rep(Inf, 6), hessian = TRUE, x = waiting[-1], y = duration[-299]) rbind(est = mix.nl1$par, se = sqrt(diag(solve(mix.nl1$hessian)))) if(!exists("bwt")) { attach(birthwt) race <- factor(race, labels=c("white", "black", "other")) ptd <- factor(ptl > 0) ftv <- factor(ftv); levels(ftv)[-(1:2)] <- "2+" bwt <- data.frame(low=factor(low), age, lwt, race, smoke=(smoke>0), ptd, ht=(ht>0), ui=(ui>0), ftv) detach(); rm(race, ptd, ftv) } logitreg <- function(x, y, wt = rep(1, length(y)), intercept = TRUE, start = rep(0, p), ...) { fmin <- function(beta, X, y, w) { p <- plogis(X %*% beta) -sum(2 * w * ifelse(y, log(p), log(1-p))) } gmin <- function(beta, X, y, w) { eta <- X %*% beta; p <- plogis(eta) -2 * matrix(w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p)), 1) %*% X } if(is.null(dim(x))) dim(x) <- c(length(x), 1) dn <- dimnames(x)[[2]] if(!length(dn)) dn <- paste("Var", 1:ncol(x), sep="") p <- ncol(x) + intercept if(intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)} if(is.factor(y)) y <- (unclass(y) != 1) fit <- optim(start, fmin, gmin, X = x, y = y, w = wt, method = "BFGS", ...) names(fit$par) <- dn cat("\nCoefficients:\n"); print(fit$par) # R: use fit$value and fit$convergence cat("\nResidual Deviance:", format(fit$value), "\n") if(fit$convergence > 0) cat("\nConvergence code:", fit$convergence, "\n") invisible(fit) } options(contrasts = c("contr.treatment", "contr.poly")) X <- model.matrix(terms(low ~ ., data=bwt), data = bwt)[, -1] logitreg(X, bwt$low) AIDSfit <- function(y, z, start=rep(mean(y), ncol(z)), ...) { deviance <- function(beta, y, z) { mu <- z %*% beta 2 * sum(mu - y - y*log(mu/y)) } grad <- function(beta, y, z) { mu <- z %*% beta 2 * t(1 - y/mu) %*% z } optim(start, deviance, grad, lower = 0, y = y, z = z, method = "L-BFGS-B", ...) } Y <- scan() 12 14 33 50 67 74 123 141 165 204 253 246 240 library(nnet) # for class.ind s <- seq(0, 13.999, 0.01); tint <- 1:14 X <- expand.grid(s, tint) Z <- matrix(pweibull(pmax(X[,2] - X[,1],0), 2.5, 10),length(s)) Z <- Z[,2:14] - Z[,1:13] Z <- t(Z) %*% class.ind(factor(floor(s/2))) * 0.01 round(AIDSfit(Y, Z)$par) rm(s, X, Y, Z) # End of ch16