R Under development (unstable) (2020-03-24 r78051) -- "Unsuffered Consequences"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin19.3.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(foreign)
> pc5 <- read.dta("pc5.dta")
Warning message:
In read.dta("pc5.dta") : cannot read factor labels from Stata 5 files
> summary(pc5)
      age             alb           alkphos         ascites      
 Min.   :26.28   Min.   :1.960   Min.   :   -9   Min.   :-9.000  
 1st Qu.:42.71   1st Qu.:3.330   1st Qu.:  423   1st Qu.: 0.000  
 Median :50.47   Median :3.570   Median : 1009   Median : 0.000  
 Mean   :50.45   Mean   :3.543   Mean   : 1525   Mean   :-2.074  
 3rd Qu.:56.99   3rd Qu.:3.820   3rd Qu.: 1677   3rd Qu.: 0.000  
 Max.   :78.44   Max.   :4.640   Max.   :13862   Max.   : 1.000  
      bili             chol            edema            edemarx       
 Min.   : 0.300   Min.   :  -9.0   Min.   :0.00000   Min.   :0.00000  
 1st Qu.: 0.700   1st Qu.:  -9.0   1st Qu.:0.00000   1st Qu.:0.00000  
 Median : 1.200   Median : 256.0   Median :0.00000   Median :0.00000  
 Mean   : 2.688   Mean   : 245.8   Mean   :0.09256   Mean   :0.07815  
 3rd Qu.: 3.000   3rd Qu.: 346.0   3rd Qu.:0.00000   3rd Qu.:0.00000  
 Max.   :28.000   Max.   :1775.0   Max.   :1.00000   Max.   :1.00000  
     hepmeg           time          plate        protime           sex        
 Min.   :-9.00   Min.   :  41   Min.   : -9   Min.   : 9.00   Min.   :-9.000  
 1st Qu.: 0.00   1st Qu.:1434   1st Qu.:181   1st Qu.:10.00   1st Qu.: 0.000  
 Median : 0.00   Median :1487   Median :249   Median :10.60   Median : 1.000  
 Mean   :-1.75   Mean   :1760   Mean   :252   Mean   :10.67   Mean   :-1.434  
 3rd Qu.: 1.00   3rd Qu.:2153   3rd Qu.:321   3rd Qu.:11.00   3rd Qu.: 1.000  
 Max.   : 1.00   Max.   :4795   Max.   :721   Max.   :18.00   Max.   : 1.000  
      sgot           spiders           stage              cens       
 Min.   : -9.00   Min.   :-9.000   Min.   :-9.0000   Min.   :0.0000  
 1st Qu.: 44.20   1st Qu.: 0.000   1st Qu.: 1.0000   1st Qu.:0.0000  
 Median : 88.35   Median : 0.000   Median : 3.0000   Median :0.0000  
 Mean   : 88.22   Mean   :-1.914   Mean   : 0.1351   Mean   :0.2443  
 3rd Qu.:130.20   3rd Qu.: 0.000   3rd Qu.: 3.0000   3rd Qu.:0.0000  
 Max.   :457.25   Max.   : 1.000   Max.   : 4.0000   Max.   :1.0000  
       rx               trig            copper             id       
 Min.   :-9.0000   Min.   : -9.00   Min.   : -9.00   Min.   :  1.0  
 1st Qu.: 1.0000   1st Qu.: -9.00   1st Qu.: 10.00   1st Qu.: 99.5  
 Median : 1.0000   Median : 85.00   Median : 48.00   Median :195.0  
 Mean   :-0.9788   Mean   : 81.44   Mean   : 65.26   Mean   :199.6  
 3rd Qu.: 2.0000   3rd Qu.:126.00   3rd Qu.: 88.00   3rd Qu.:302.5  
 Max.   : 2.0000   Max.   :598.00   Max.   :588.00   Max.   :418.0  
     first             late              t0        
 Min.   :0.0000   Min.   :0.0000   Min.   :   0.0  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:   0.0  
 Median :0.0000   Median :0.0000   Median :   0.0  
 Mean   :0.3657   Mean   :0.3657   Mean   : 543.8  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1487.0  
 Max.   :1.0000   Max.   :1.0000   Max.   :1487.0  
> str(pc5)
'data.frame':	659 obs. of  24 variables:
 $ age    : num  58.8 56.4 56.4 70.1 54.7 ...
 $ alb    : num  2.6 4.14 4.14 3.48 2.54 ...
 $ alkphos: num  1718 7395 7395 516 6122 ...
 $ ascites: num  1 0 0 0 0 0 0 0 0 0 ...
 $ bili   : num  14.5 1.1 1.1 1.4 1.8 ...
 $ chol   : num  261 302 302 176 244 244 279 279 248 248 ...
 $ edema  : num  1 0 0 1 1 1 0 0 0 0 ...
 $ edemarx: num  1 0 0 0.5 0.5 0.5 0 0 0 0 ...
 $ hepmeg : num  1 1 1 0 1 1 1 1 1 1 ...
 $ time   : num  400 1487 4500 1012 1487 ...
 $ plate  : num  190 221 221 151 183 183 136 136 -9 -9 ...
 $ protime: num  12.2 10.6 10.6 12 10.3 ...
 $ sex    : num  1 1 1 0 1 1 1 1 1 1 ...
 $ sgot   : num  137.9 113.5 113.5 96.1 60.6 ...
 $ spiders: num  1 1 1 0 1 1 1 1 0 0 ...
 $ stage  : num  4 3 3 4 4 4 3 3 3 3 ...
 $ cens   : num  1 0 0 1 0 1 0 0 0 1 ...
 $ rx     : num  1 1 1 1 1 1 2 2 2 2 ...
 $ trig   : num  172 88 88 55 92 92 72 72 63 63 ...
 $ copper : num  156 54 54 210 64 64 143 143 50 50 ...
 $ id     : num  1 2 2 3 4 4 5 5 6 6 ...
 $ first  : num  0 1 0 0 1 0 1 0 1 0 ...
 $ late   : num  0 0 1 0 0 1 0 1 0 1 ...
 $ t0     : num  0 0 1487 0 0 ...
 - attr(*, "datalabel")= chr ""
 - attr(*, "time.stamp")= chr "14 Feb 1997 14:22"
 - attr(*, "formats")= chr [1:24] "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
 - attr(*, "types")= int [1:24] 102 102 102 102 102 102 102 102 102 102 ...
 - attr(*, "val.labels")= chr [1:24] "" "" "" "" ...
 - attr(*, "var.labels")= chr [1:24] "" "" "" "" ...
 - attr(*, "version")= int 5
> compressed <- read.dta("compressed.dta")
> summary(compressed)
      age             alb           alkphos         ascites      
 Min.   :26.28   Min.   :1.960   Min.   :   -9   Min.   :-9.000  
 1st Qu.:42.71   1st Qu.:3.330   1st Qu.:  423   1st Qu.: 0.000  
 Median :50.47   Median :3.570   Median : 1009   Median : 0.000  
 Mean   :50.45   Mean   :3.543   Mean   : 1525   Mean   :-2.074  
 3rd Qu.:56.99   3rd Qu.:3.820   3rd Qu.: 1677   3rd Qu.: 0.000  
 Max.   :78.44   Max.   :4.640   Max.   :13862   Max.   : 1.000  
      bili             chol            edema            edemarx       
 Min.   : 0.300   Min.   :  -9.0   Min.   :0.00000   Min.   :0.00000  
 1st Qu.: 0.700   1st Qu.:  -9.0   1st Qu.:0.00000   1st Qu.:0.00000  
 Median : 1.200   Median : 256.0   Median :0.00000   Median :0.00000  
 Mean   : 2.688   Mean   : 245.8   Mean   :0.09256   Mean   :0.07815  
 3rd Qu.: 3.000   3rd Qu.: 346.0   3rd Qu.:0.00000   3rd Qu.:0.00000  
 Max.   :28.000   Max.   :1775.0   Max.   :1.00000   Max.   :1.00000  
     hepmeg           time          plate        protime           sex        
 Min.   :-9.00   Min.   :  41   Min.   : -9   Min.   : 9.00   Min.   :-9.000  
 1st Qu.: 0.00   1st Qu.:1434   1st Qu.:181   1st Qu.:10.00   1st Qu.: 0.000  
 Median : 0.00   Median :1487   Median :249   Median :10.60   Median : 1.000  
 Mean   :-1.75   Mean   :1760   Mean   :252   Mean   :10.67   Mean   :-1.434  
 3rd Qu.: 1.00   3rd Qu.:2153   3rd Qu.:321   3rd Qu.:11.00   3rd Qu.: 1.000  
 Max.   : 1.00   Max.   :4795   Max.   :721   Max.   :18.00   Max.   : 1.000  
      sgot           spiders           stage              cens       
 Min.   : -9.00   Min.   :-9.000   Min.   :-9.0000   Min.   :0.0000  
 1st Qu.: 44.20   1st Qu.: 0.000   1st Qu.: 1.0000   1st Qu.:0.0000  
 Median : 88.35   Median : 0.000   Median : 3.0000   Median :0.0000  
 Mean   : 88.22   Mean   :-1.914   Mean   : 0.1351   Mean   :0.2443  
 3rd Qu.:130.20   3rd Qu.: 0.000   3rd Qu.: 3.0000   3rd Qu.:0.0000  
 Max.   :457.25   Max.   : 1.000   Max.   : 4.0000   Max.   :1.0000  
       rx               trig            copper             id       
 Min.   :-9.0000   Min.   : -9.00   Min.   : -9.00   Min.   :  1.0  
 1st Qu.: 1.0000   1st Qu.: -9.00   1st Qu.: 10.00   1st Qu.: 99.5  
 Median : 1.0000   Median : 85.00   Median : 48.00   Median :195.0  
 Mean   :-0.9788   Mean   : 81.44   Mean   : 65.26   Mean   :199.6  
 3rd Qu.: 2.0000   3rd Qu.:126.00   3rd Qu.: 88.00   3rd Qu.:302.5  
 Max.   : 2.0000   Max.   :598.00   Max.   :588.00   Max.   :418.0  
     first             late              t0        
 Min.   :0.0000   Min.   :0.0000   Min.   :   0.0  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:   0.0  
 Median :0.0000   Median :0.0000   Median :   0.0  
 Mean   :0.3657   Mean   :0.3657   Mean   : 543.8  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1487.0  
 Max.   :1.0000   Max.   :1.0000   Max.   :1487.0  
> all.equal(summary(pc5), summary(compressed))
[1] TRUE
> sun6 <- read.dta("sun6.dta")
> summary(sun6)
      age             alb           alkphos         ascites      
 Min.   :26.28   Min.   :1.960   Min.   :   -9   Min.   :-9.000  
 1st Qu.:42.71   1st Qu.:3.330   1st Qu.:  423   1st Qu.: 0.000  
 Median :50.47   Median :3.570   Median : 1009   Median : 0.000  
 Mean   :50.45   Mean   :3.543   Mean   : 1525   Mean   :-2.074  
 3rd Qu.:56.99   3rd Qu.:3.820   3rd Qu.: 1677   3rd Qu.: 0.000  
 Max.   :78.44   Max.   :4.640   Max.   :13862   Max.   : 1.000  
      bili             chol            edema            edemarx       
 Min.   : 0.300   Min.   :  -9.0   Min.   :0.00000   Min.   :0.00000  
 1st Qu.: 0.700   1st Qu.:  -9.0   1st Qu.:0.00000   1st Qu.:0.00000  
 Median : 1.200   Median : 256.0   Median :0.00000   Median :0.00000  
 Mean   : 2.688   Mean   : 245.8   Mean   :0.09256   Mean   :0.07815  
 3rd Qu.: 3.000   3rd Qu.: 346.0   3rd Qu.:0.00000   3rd Qu.:0.00000  
 Max.   :28.000   Max.   :1775.0   Max.   :1.00000   Max.   :1.00000  
     hepmeg           time          plate        protime           sex        
 Min.   :-9.00   Min.   :  41   Min.   : -9   Min.   : 9.00   Min.   :-9.000  
 1st Qu.: 0.00   1st Qu.:1434   1st Qu.:181   1st Qu.:10.00   1st Qu.: 0.000  
 Median : 0.00   Median :1487   Median :249   Median :10.60   Median : 1.000  
 Mean   :-1.75   Mean   :1760   Mean   :252   Mean   :10.67   Mean   :-1.434  
 3rd Qu.: 1.00   3rd Qu.:2153   3rd Qu.:321   3rd Qu.:11.00   3rd Qu.: 1.000  
 Max.   : 1.00   Max.   :4795   Max.   :721   Max.   :18.00   Max.   : 1.000  
      sgot           spiders           stage              cens       
 Min.   : -9.00   Min.   :-9.000   Min.   :-9.0000   Min.   :0.0000  
 1st Qu.: 44.20   1st Qu.: 0.000   1st Qu.: 1.0000   1st Qu.:0.0000  
 Median : 88.35   Median : 0.000   Median : 3.0000   Median :0.0000  
 Mean   : 88.22   Mean   :-1.914   Mean   : 0.1351   Mean   :0.2443  
 3rd Qu.:130.20   3rd Qu.: 0.000   3rd Qu.: 3.0000   3rd Qu.:0.0000  
 Max.   :457.25   Max.   : 1.000   Max.   : 4.0000   Max.   :1.0000  
       rx               trig            copper             id       
 Min.   :-9.0000   Min.   : -9.00   Min.   : -9.00   Min.   :  1.0  
 1st Qu.: 1.0000   1st Qu.: -9.00   1st Qu.: 10.00   1st Qu.: 99.5  
 Median : 1.0000   Median : 85.00   Median : 48.00   Median :195.0  
 Mean   :-0.9788   Mean   : 81.44   Mean   : 65.26   Mean   :199.6  
 3rd Qu.: 2.0000   3rd Qu.:126.00   3rd Qu.: 88.00   3rd Qu.:302.5  
 Max.   : 2.0000   Max.   :598.00   Max.   :588.00   Max.   :418.0  
     first             late              t0        
 Min.   :0.0000   Min.   :0.0000   Min.   :   0.0  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:   0.0  
 Median :0.0000   Median :0.0000   Median :   0.0  
 Mean   :0.3657   Mean   :0.3657   Mean   : 543.8  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1487.0  
 Max.   :1.0000   Max.   :1.0000   Max.   :1487.0  
> str(sun6)
'data.frame':	659 obs. of  24 variables:
 $ age    : num  58.8 56.4 56.4 70.1 54.7 ...
 $ alb    : num  2.6 4.14 4.14 3.48 2.54 ...
 $ alkphos: num  1718 7395 7395 516 6122 ...
 $ ascites: int  1 0 0 0 0 0 0 0 0 0 ...
 $ bili   : num  14.5 1.1 1.1 1.4 1.8 ...
 $ chol   : int  261 302 302 176 244 244 279 279 248 248 ...
 $ edema  : int  1 0 0 1 1 1 0 0 0 0 ...
 $ edemarx: num  1 0 0 0.5 0.5 0.5 0 0 0 0 ...
 $ hepmeg : int  1 1 1 0 1 1 1 1 1 1 ...
 $ time   : int  400 1487 4500 1012 1487 1925 1487 1504 1487 2503 ...
 $ plate  : int  190 221 221 151 183 183 136 136 -9 -9 ...
 $ protime: num  12.2 10.6 10.6 12 10.3 ...
 $ sex    : int  1 1 1 0 1 1 1 1 1 1 ...
 $ sgot   : num  137.9 113.5 113.5 96.1 60.6 ...
 $ spiders: int  1 1 1 0 1 1 1 1 0 0 ...
 $ stage  : int  4 3 3 4 4 4 3 3 3 3 ...
 $ cens   : int  1 0 0 1 0 1 0 0 0 1 ...
 $ rx     : int  1 1 1 1 1 1 2 2 2 2 ...
 $ trig   : int  172 88 88 55 92 92 72 72 63 63 ...
 $ copper : int  156 54 54 210 64 64 143 143 50 50 ...
 $ id     : int  1 2 2 3 4 4 5 5 6 6 ...
 $ first  : int  0 1 0 0 1 0 1 0 1 0 ...
 $ late   : int  0 0 1 0 0 1 0 1 0 1 ...
 $ t0     : int  0 0 1487 0 0 1487 0 1487 0 1487 ...
 - attr(*, "datalabel")= chr ""
 - attr(*, "time.stamp")= chr "14 Sep 2000 10:40"
 - attr(*, "formats")= chr [1:24] "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
 - attr(*, "types")= int [1:24] 102 102 102 98 102 105 98 102 98 105 ...
 - attr(*, "val.labels")= chr [1:24] "" "" "" "" ...
 - attr(*, "var.labels")= chr [1:24] "" "" "" "" ...
 - attr(*, "version")= int 6
> all.equal(summary(sun6),summary(pc5))
[1] TRUE
> df <- read.dta("datefactor.dta")
> summary(df)
      hlth159         id            adate           
 EXCELLENT: 0   Min.   : 1.00   Min.   :1960-01-02  
 VERY GOOD: 6   1st Qu.: 8.25   1st Qu.:1960-01-09  
 GOOD     : 8   Median :15.50   Median :1960-01-16  
 FAIR     : 4   Mean   :15.50   Mean   :1960-01-16  
 POOR     : 1   3rd Qu.:22.75   3rd Qu.:1960-01-23  
 NA's     :11   Max.   :30.00   Max.   :1960-01-31  
> data(esoph)
> write.dta(esoph,esophile <- tempfile())
> esoph2 <- read.dta(esophile)
> all.equal(ordered(esoph2$alcgp),esoph$alcgp)
[1] TRUE
> write.dta(esoph,esophile,convert.factors="string")
> esoph2 <- read.dta(esophile)
> all.equal(as.character(esoph$alcgp),esoph2$alcgp)
[1] TRUE
> write.dta(esoph,esophile,convert.factors="code")
> esoph2 <- read.dta(esophile)
> all.equal(as.numeric(esoph$alcgp),as.numeric(esoph2$alcgp))
[1] TRUE
> 
> se <- read.dta("stata7se.dta")
> print(se)
      race number
1    white      2
2    asian      5
3 hispanic      5
4    white      4
5    black      5
6    white      6
7    black      7
> v8 <- read.dta("stata8mac.dta")
> print(v8)
      race number
1    white      2
2    asian      5
3 hispanic      5
4    white      4
5    black      5
6    white      6
7    black      7
> 
> stata8 <- read.dta("auto8.dta",missing.type=TRUE,convert.underscore=FALSE)
> str(stata8)
'data.frame':	74 obs. of  13 variables:
 $ make        : chr  "AMC Concord" "AMC Pacer" "AMC Spirit" "Buick Century" ...
 $ price       : int  4099 4749 3799 4816 7827 5788 4453 5189 10372 4082 ...
 $ mpg         : int  22 17 22 20 15 18 26 20 16 19 ...
 $ rep78       : int  3 3 NA 3 4 3 NA 3 3 3 ...
 $ headroom    : num  2.5 3 3 4.5 4 4 3 2 3.5 3.5 ...
 $ trunk       : int  11 11 12 16 20 21 10 16 17 13 ...
 $ weight      : int  2930 3350 2640 3250 4080 3670 2230 3280 3880 3400 ...
 $ length      : int  186 173 168 196 222 218 170 200 207 200 ...
 $ turn        : int  40 40 35 40 43 43 34 42 43 42 ...
 $ displacement: int  121 258 121 196 350 231 304 196 231 231 ...
 $ gear_ratio  : num  3.58 2.53 3.08 2.93 2.41 ...
 $ foreign     : Factor w/ 2 levels "Domestic","Foreign": 1 1 1 1 1 1 1 1 1 1 ...
 $ testmiss    : num  NA NA NA NA NA NA NA NA NA NA ...
 - attr(*, "datalabel")= chr "1978 Automobile Data"
 - attr(*, "time.stamp")= chr "20 May 2003 14:39"
 - attr(*, "formats")= chr [1:13] "%-18s" "%8.0gc" "%8.0g" "%8.0g" ...
 - attr(*, "types")= int [1:13] 18 252 252 252 254 252 252 252 252 252 ...
 - attr(*, "val.labels")= chr [1:13] "" "" "" "" ...
 - attr(*, "var.labels")= chr [1:13] "Make and Model" "Price" "Mileage (mpg)" "Repair Record 1978" ...
 - attr(*, "version")= int 8
 - attr(*, "label.table")=List of 1
  ..$ origin: Named int [1:2] 0 1
  .. ..- attr(*, "names")= chr [1:2] "Domestic" "Foreign"
 - attr(*, "missing")=List of 13
  ..$ make        : NULL
  ..$ price       : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ mpg         : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ rep78       : num [1:74] NA NA 0 NA NA NA 0 NA NA NA ...
  ..$ headroom    : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ trunk       : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ weight      : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ length      : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ turn        : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ displacement: num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ gear_ratio  : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ foreign     : num [1:74] NA NA NA NA NA NA NA NA NA NA ...
  ..$ testmiss    : num [1:74] 18 18 18 18 18 18 18 18 18 18 ...
> 
> bq <- read.dta("MLLabelsWithNotesChar.dta")
> str(bq)
'data.frame':	0 obs. of  1 variable:
 $ female: Factor w/ 2 levels "No","Yes": 
 - attr(*, "datalabel")= chr "datalabelBQ"
 - attr(*, "time.stamp")= chr "27 Apr 2013 16:16"
 - attr(*, "formats")= chr "%8.0g"
 - attr(*, "types")= int 251
 - attr(*, "val.labels")= chr "female_lbl_def"
 - attr(*, "var.labels")= chr "Is it female"
 - attr(*, "expansion.fields")=List of 11
  ..$ : chr [1:3] "female" "question" "Are you Female?"
  ..$ : chr [1:3] "_dta" "_lang_c" "default"
  ..$ : chr [1:3] "_dta" "_lang_v_spanish" "etiqdataBQ"
  ..$ : chr [1:3] "female" "_lang_l_spanish" "female_lbl_es"
  ..$ : chr [1:3] "female" "_lang_v_spanish" "Femenino"
  ..$ : chr [1:3] "_dta" "note1" "datasetNoteTxt"
  ..$ : chr [1:3] "_dta" "note0" "1"
  ..$ : chr [1:3] "female" "note2" "FemaleNote2Txt"
  ..$ : chr [1:3] "female" "note0" "2"
  ..$ : chr [1:3] "female" "note1" "FemaleNoteTxt"
  ..$ : chr [1:3] "_dta" "_lang_list" "default spanish"
 - attr(*, "version")= int 12
 - attr(*, "label.table")=List of 2
  ..$ female_lbl_es : Named int [1:2] 0 1
  .. ..- attr(*, "names")= chr [1:2] "No" "Si"
  ..$ female_lbl_def: Named int [1:2] 0 1
  .. ..- attr(*, "names")= chr [1:2] "No" "Yes"
> write.dta(bq, "bq.dta", version = 12)
> str(read.dta('bq.dta'))
'data.frame':	0 obs. of  1 variable:
 $ female: Factor w/ 2 levels "No","Yes": 
 - attr(*, "datalabel")= chr "datalabelBQ"
 - attr(*, "time.stamp")= chr ""
 - attr(*, "formats")= chr "%9.0g"
 - attr(*, "types")= int 253
 - attr(*, "val.labels")= chr "female_lbl_def"
 - attr(*, "var.labels")= chr "Is it female"
 - attr(*, "expansion.fields")=List of 11
  ..$ : chr [1:3] "female" "question" "Are you Female?"
  ..$ : chr [1:3] "_dta" "_lang_c" "default"
  ..$ : chr [1:3] "_dta" "_lang_v_spanish" "etiqdataBQ"
  ..$ : chr [1:3] "female" "_lang_l_spanish" "female_lbl_es"
  ..$ : chr [1:3] "female" "_lang_v_spanish" "Femenino"
  ..$ : chr [1:3] "_dta" "note1" "datasetNoteTxt"
  ..$ : chr [1:3] "_dta" "note0" "1"
  ..$ : chr [1:3] "female" "note2" "FemaleNote2Txt"
  ..$ : chr [1:3] "female" "note0" "2"
  ..$ : chr [1:3] "female" "note1" "FemaleNoteTxt"
  ..$ : chr [1:3] "_dta" "_lang_list" "default spanish"
 - attr(*, "version")= int 12
 - attr(*, "label.table")=List of 2
  ..$ female_lbl_def: Named int [1:2] 1 2
  .. ..- attr(*, "names")= chr [1:2] "No" "Yes"
  ..$ female_lbl_es : Named int [1:2] 0 1
  .. ..- attr(*, "names")= chr [1:2] "No" "Si"
> unlink("bq.dta")
> 
> ## PR#15290
> bq <- read.dta("OneVarTwoValLabels.dta")
> str(bq)
'data.frame':	0 obs. of  1 variable:
 $ female: Factor w/ 2 levels "Male","Female": 
 - attr(*, "datalabel")= chr ""
 - attr(*, "time.stamp")= chr "25 Apr 2013 21:40"
 - attr(*, "formats")= chr "%9.0g"
 - attr(*, "types")= int 251
 - attr(*, "val.labels")= chr "fem_lbl_val_en"
 - attr(*, "var.labels")= chr ""
 - attr(*, "expansion.fields")=List of 3
  ..$ : chr [1:3] "_dta" "_lang_c" "default"
  ..$ : chr [1:3] "female" "_lang_l_spanish" "fem_lbl_val_es"
  ..$ : chr [1:3] "_dta" "_lang_list" "default spanish"
 - attr(*, "version")= int 12
 - attr(*, "label.table")=List of 2
  ..$ fem_lbl_val_es: Named int [1:2] 0 1
  .. ..- attr(*, "names")= chr [1:2] "Masculino" "Femenino"
  ..$ fem_lbl_val_en: Named int [1:2] 0 1
  .. ..- attr(*, "names")= chr [1:2] "Male" "Female"
> 
> ## Dates and date-times in Stata12
> Sys.setenv(TZ = "UTC") # avoid timezone differences: cannot unset so must be last
> read.dta("xxx12.dta")
                     x                  xc               xbigc      xdate
1  2014-01-23 20:07:16 2014-01-23 20:07:16 2014-01-23 20:07:16 2014-01-23
2  2014-01-23 20:07:17 2014-01-23 20:07:17 2014-01-23 20:07:17 2014-01-23
3  2014-01-23 20:07:18 2014-01-23 20:07:18 2014-01-23 20:07:18 2014-01-23
4  2014-01-23 20:07:19 2014-01-23 20:07:19 2014-01-23 20:07:19 2014-01-23
5  2014-01-23 20:07:20 2014-01-23 20:07:20 2014-01-23 20:07:20 2014-01-23
6  2014-01-23 20:07:21 2014-01-23 20:07:21 2014-01-23 20:07:21 2014-01-23
7  2014-01-23 20:07:22 2014-01-23 20:07:22 2014-01-23 20:07:22 2014-01-23
8  2014-01-23 20:07:23 2014-01-23 20:07:23 2014-01-23 20:07:23 2014-01-23
9  2014-01-23 20:07:24 2014-01-23 20:07:24 2014-01-23 20:07:24 2014-01-23
10 2014-01-23 20:07:25 2014-01-23 20:07:25 2014-01-23 20:07:25 2014-01-23
> 
> q()
> proc.time()
   user  system elapsed 
  0.377   0.063   0.430