library(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Simple tests of concordance # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) grank <- function(x, time, grp, wt) unlist(tapply(x, grp, rank)) grank2 <- function(x, time, grp, wt) { #for case weights if (length(wt)==0) wt <- rep(1, length(x)) z <- double(length(x)) for (i in unique(grp)) { indx <- which(grp==i) temp <- tapply(wt[indx], x[indx], sum) temp <- temp/2 + c(0, cumsum(temp)[-length(temp)]) z[indx] <- temp[match(x[indx], names(temp))] } z } # Concordance by brute force. O(n^2) algorithm, but ok for n<500 or so allpair <- function(x, time, status, wt, all=FALSE) { if (missing(wt)) wt <- rep(1, length(x)) count <- sapply(which(status==1), function(i) { atrisk <- (time > time[i]) | (time==time[i] & status==0) temp <- tapply(wt[atrisk], factor(sign(x[i] -x[atrisk]), c(1, -1, 0)), sum) wt[i]* c(ifelse(is.na(temp), 0, temp), (sum(wt[time==time[i] & status==1]) - wt[i])/2) }) rownames(count) <- c("concordant", "discordant", "tied.x", "tied.y") if (all) { colnames(count) <- time[status==1] t(count) } else rowSums(count) } # The std of C = std(numerator)/(number of comparable pairs) # The information matrix of a Cox model is = to the var(C-D) cfun <- function(fit) fit$cvar * sum(fit$count[1:3])^2 tdata <- aml[aml$x=='Maintained', c("time", "status")] tdata$x <- c(1,6,2,7,3,7,3,8,4,4,5) tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1) fit <- concordance(Surv(time, status) ~x, tdata) aeq(fit$count[1:4], c(24,14,2,0)) cfit <- coxph(Surv(time, status) ~ tt(x), tdata, tt=grank, method='breslow', iter=0, x=T) cdt <- coxph.detail(cfit) aeq(sum(cdt$imat), cfun(fit)) aeq(sum(2*cdt$score), diff(fit$count[1:2])) aeq(with(tdata, allpair(x, time, status)), c(14,24,2,0)) # Lots of ties tempy <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1)) tempx <- c(5,5,4,4,3,3,7,6,5,4) fit2 <- concordance(tempy ~ tempx) addxy <- function(x) c(x[1:3], sum(x[4:5])) aeq(addxy(fit2$count), allpair(tempx, tempy[,1], tempy[,2])) cfit2 <- coxph(tempy ~ tt(tempx), tt=grank, method='breslow', iter=0) aeq(cfit2$var, 1/cfun(fit2)) # Direct call fit2b <- concordancefit(tempy, tempx) fit2c <- concordancefit(tempy, tempx, std.err=FALSE) all.equal(fit2[1:5], fit2b) all.equal(fit2b[1:3], fit2c) # Bigger data fit3 <- concordance(Surv(time, status) ~ age, lung, reverse=TRUE) aeq(addxy(fit3$count), allpair(lung$age, lung$time, lung$status-1)) cfit3 <- coxph(Surv(time, status) ~ tt(age), lung, iter=0, method='breslow', tt=grank, x=T) cdt <- coxph.detail(cfit3) aeq(sum(cdt$imat), cfun(fit3)) aeq(2*sum(cdt$score), diff(fit3$count[2:1])) # More ties fit4 <- concordance(Surv(time, status) ~ ph.ecog, lung, reverse=TRUE) aeq(addxy(fit4$count), allpair(lung$ph.ecog, lung$time, lung$status-1)) aeq(fit4$count[1:5], c(8392, 4258, 7137, 21, 7)) cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung, iter=0, method='breslow', tt=grank) aeq(1/cfit4$var, cfun(fit4)) # Case weights fit5 <- concordance(Surv(time, status) ~ x, tdata, weights=wt, reverse=TRUE) fit6 <- concordance(Surv(time, status) ~x, tdata[rep(1:11,tdata$wt),]) aeq(addxy(fit5$count), with(tdata, allpair(x, time, status, wt))) aeq(fit5$count[1:4], c(70, 91, 7, 0)) # checked by hand aeq(fit5$count[1:3], fit6$count[c(2,1,3)]) #spurious "tied on time" values, ignore aeq(fit5$std, fit6$std) cfit5 <- coxph(Surv(time, status) ~ tt(x), tdata, weights=wt, iter=0, method='breslow', tt=grank2) cfit6 <- coxph(Surv(time, status) ~ tt(x), tdata[rep(1:11,tdata$wt),], iter=0, method='breslow', tt=grank) aeq(1/cfit6$var, cfun(fit6)) aeq(cfit5$var, cfit6$var) # Start, stop simplest cases fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata) aeq(fit7$count, fit$count) aeq(fit7$std.err, fit$std.err) fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata, weights=wt) aeq(fit5$count, fit7$count[c(2,1,3:5)]) #one reversed, one not # Multiple intervals for some, but same risk sets as tdata tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0, 0,9, 5), time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45, 9,48, 60), status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0), x = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5), wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1)) fit8 <- concordance(Surv(time1, time2, status) ~x, tdata2, weights=wt, reverse=TRUE) aeq(fit5$count, fit8$count) aeq(fit5$std.err, fit8$std.err) cfit8 <- coxph(Surv(time1, time2, status) ~ tt(x), tdata2, weights=wt, iter=0, method='breslow', tt=grank2) aeq(1/cfit8$var, cfun(fit8)) # Stratified tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))), time2=c(tdata2$time2, lung$time), status = c(tdata2$status, lung$status -1), x = c(tdata2$x, lung$ph.ecog), wt= c(tdata2$wt, rep(1, nrow(lung))), grp=rep(1:2, c(nrow(tdata2), nrow(lung)))) fit9 <- concordance(Surv(time1, time2, status) ~x + strata(grp), data=tdata3, weights=wt, reverse=TRUE) aeq(fit9$count[1,], fit5$count) aeq(fit9$count[2,], fit4$count)