% \VignetteIndexEntry{iterators Manual} % \VignetteDepends{iterators} % \VignettePackage{iterators} \documentclass[12pt]{article} \usepackage{amsmath} \usepackage[pdftex]{graphicx} \usepackage{color} \usepackage{xspace} \usepackage{fancyvrb} \usepackage{fancyhdr} \usepackage[ colorlinks=true, linkcolor=blue, citecolor=blue, urlcolor=blue] {hyperref} \usepackage{lscape} \usepackage{Sweave} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define new colors for use \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{darkred}{rgb}{0.6,0.0,0} \definecolor{lightbrown}{rgb}{1,0.9,0.8} \definecolor{brown}{rgb}{0.6,0.3,0.3} \definecolor{darkblue}{rgb}{0,0,0.8} \definecolor{darkmagenta}{rgb}{0.5,0,0.5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\bld}[1]{\mbox{\boldmath $#1$}} \newcommand{\shell}[1]{\mbox{$#1$}} \renewcommand{\vec}[1]{\mbox{\bf {#1}}} \newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize} \newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize} \newcommand{\halfs}{\frac{1}{2}} \setlength{\oddsidemargin}{-.25 truein} \setlength{\evensidemargin}{0truein} \setlength{\topmargin}{-0.2truein} \setlength{\textwidth}{7 truein} \setlength{\textheight}{8.5 truein} \setlength{\parindent}{0.20truein} \setlength{\parskip}{0.10truein} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagestyle{fancy} \lhead{} \chead{Using The {\tt iterators} Package} \rhead{} \lfoot{} \cfoot{} \rfoot{\thepage} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Using The {\tt iterators} Package} \author{Rich Calaway} \begin{document} \maketitle \thispagestyle{empty} \section{Introduction} An {\em iterator} is a special type of object that generalizes the notion of a looping variable. When passed as an argument to a function that knows what to do with it, the iterator supplies a sequence of values. The iterator also maintains information about its state, in particular its current index. The \texttt{iterators} package includes a number of functions for creating iterators, the simplest of which is \texttt{iter}, which takes virtually any R object and turns it into an iterator object. The simplest function that operates on iterators is the \texttt{nextElem} function, which when given an iterator, returns the next value of the iterator. For example, here we create an iterator object from the sequence 1 to 10, and then use \texttt{nextElem} to iterate through the values: <>= library(iterators) i1 <- iter(1:10) nextElem(i1) nextElem(i1) @ You can create iterators from matrices and data frames, using the \texttt{by} argument to specify whether to iterate by row or column: <>= istate <- iter(state.x77, by='row') nextElem(istate) nextElem(istate) @ Iterators can also be created from functions, in which case the iterator can be an endless source of values: <>= ifun <- iter(function() sample(0:9, 4, replace=TRUE)) nextElem(ifun) nextElem(ifun) @ For practical applications, iterators can be paired with \texttt{foreach} to obtain parallel results quite easily: \begin{Schunk} \begin{Sinput} > library(foreach) \end{Sinput} \begin{Soutput} foreach: simple, scalable parallel programming from Revolution Analytics Use Revolution R for scalability, fault tolerance and more. http://www.revolutionanalytics.com \end{Soutput} \begin{Sinput} > x <- matrix(rnorm(1e+06), ncol = 10000) > itx <- iter(x, by = "row") > foreach(i = itx, .combine = c) %dopar% mean(i) \end{Sinput} \begin{Soutput} [1] -0.0069652059 0.0161112989 0.0080068074 -0.0120020610 0.0017168149 [6] 0.0139835943 -0.0078172106 -0.0024762273 -0.0031558268 -0.0072662893 [11] -0.0055142639 0.0015717907 -0.0100842965 -0.0123601527 0.0136420084 [16] -0.0242922105 -0.0126416949 -0.0052951152 0.0216329326 -0.0262476648 [21] 0.0041937609 0.0121253368 -0.0110165729 0.0044267635 0.0080241894 [26] 0.0042995539 -0.0102826632 0.0051185628 -0.0013970812 -0.0172380786 [31] 0.0096079613 0.0046837729 -0.0080726970 0.0083781727 -0.0234620163 [36] -0.0099883966 0.0026883628 0.0029367320 0.0205825899 0.0035303940 [41] 0.0204990426 -0.0010804987 -0.0033665481 -0.0127492019 -0.0147443195 [46] 0.0027046346 0.0016449793 0.0155575490 -0.0003488394 -0.0079238019 [51] 0.0086390030 -0.0039033309 0.0168593825 -0.0067189572 -0.0009925288 [56] -0.0162907048 -0.0059171838 0.0093806072 0.0100886929 -0.0111677408 [61] 0.0021754963 -0.0056770907 0.0081200698 -0.0029828717 -0.0163704350 [66] 0.0057266267 -0.0017156156 0.0214172738 -0.0141379874 -0.0126593342 [71] 0.0087124575 0.0040231519 0.0038515673 0.0066066908 0.0023586046 [76] -0.0044167901 -0.0090543553 0.0010806096 0.0102288061 0.0039881702 [81] -0.0054549319 -0.0127997275 -0.0031697122 -0.0016100996 -0.0143468118 [86] 0.0035904125 -0.0059399479 0.0085565480 -0.0159064868 0.0054120554 [91] -0.0084420572 0.0194448129 -0.0103192553 -0.0062924628 0.0215069258 [96] 0.0015749065 0.0109657488 0.0152237842 -0.0057181022 0.0035530715 \end{Soutput} \end{Schunk} \section{Some Special Iterators} The notion of an iterator is new to R, but should be familiar to users of languages such as Python. The \texttt{iterators} package includes a number of special functions that generate iterators for some common scenarios. For example, the \texttt{irnorm} function creates an iterator for which each value is drawn from a specified random normal distribution: <>= library(iterators) itrn <- irnorm(10) nextElem(itrn) nextElem(itrn) @ Similarly, the \texttt{irunif}, \texttt{irbinom}, and \texttt{irpois} functions create iterators which drawn their values from uniform, binomial, and Poisson distributions, respectively. We can then use these functions just as we used \texttt{irnorm}: <>= itru <- irunif(10) nextElem(itru) nextElem(itru) @ The \texttt{icount} function returns an iterator that counts starting from one: <>= it <- icount(3) nextElem(it) nextElem(it) nextElem(it) @ \end{document}