library(shiny) library(bslib) library(dplyr) library(lubridate) library(plotly) library(chiflights22) # https://github.com/cpsievert/chiflights22 library(histoslider) # https://github.com/cpsievert/histoslider library(rlang) # Data prep flights <- flights %>% left_join( airports %>% transmute(dest_name = paste0(name, " (", faa, ")"), dest = faa, end_lat = lat, end_lon = lon) ) %>% filter(!is.na(dest_name)) %>% left_join( airports %>% select(origin = faa, start_lat = lat, start_lon = lon) ) %>% left_join(airlines, by = "carrier") %>% rename(carrier_name = name) %>% select(-time_hour) %>% left_join(weather) %>% mutate( # The overwhelming majority of precipation is 0 so transform # with some help from MASS::boxcox() https://stats.stackexchange.com/a/1452/48604 precip = scales::rescale(precip^-1.55/-.55), date = lubridate::ymd(paste(year, month, day, sep = "-")) ) SLIDER_HEIGHT <- 150 CHOICES <- list( origin = c( "Choose origin(s)" = "", "O'Hare" = "ORD", "Midway" = "MDW", "Rockford" = "RFD" ), dest_name = c( "Choose destination(s)" = "", sort(unique(flights$dest_name)) ), carrier_name = c( "Choose carrier(s)" = "", unique(flights$carrier_name) ) ) sidebar_acc <- accordion( open = c("Origin", "Destination"), accordion_panel( "Flight Path", # See https://github.com/rstudio/fontawesome/issues/114 icon = fontawesome::fa("plane-departure"), uiOutput("flight_path_reset"), selectizeInput( "origin", "Origin", choices = CHOICES$origin, multiple = TRUE, options = list(plugins = "remove_button", closeAfterSelect = TRUE) ), selectizeInput( "dest_name", "Destination", choices = CHOICES$dest_name, multiple = TRUE, options = list(plugins = "remove_button", closeAfterSelect = TRUE) ), selectizeInput( "carrier_name", "Carrier", choices = CHOICES$carrier_name, multiple = TRUE, options = list(plugins = "remove_button", closeAfterSelect = TRUE) ) ), accordion_panel( "Flight time", icon = fontawesome::fa("clock"), input_histoslider( "sched_dep_time", "Departure time", flights$sched_dep_time, height = SLIDER_HEIGHT, options = list(handleLabelFormat = "0d") ), input_histoslider( "sched_arr_time", "Arrival time", flights$sched_arr_time, height = SLIDER_HEIGHT, options = list(handleLabelFormat = "0d") ), input_histoslider( "date", "Date", flights$date, height = SLIDER_HEIGHT, breaks = "months", options = list(handleLabelFormat = "%b %e") ) ), accordion_panel( "Weather", icon = fontawesome::fa("cloud-rain"), # TODO: problematic (many NAs) #input_histoslider( # "precip", "Precipitation", # flights$precip, # height = SLIDER_HEIGHT #), input_histoslider( "wind_speed", "Wind speed", flights$wind_speed, height = SLIDER_HEIGHT ), input_histoslider( "wind_gust", "Wind gust", flights$wind_gust, height = SLIDER_HEIGHT ) ) ) flights_card <- card( full_screen = TRUE, card_header( "Flight paths", tooltip( bsicons::bs_icon("info-circle", title = "About marker areas"), "Marker areas are proportional to mean arrival delay" ), class = "d-flex justify-content-between align-items-center" ), plotlyOutput("flight_paths") ) avg_delay_by_category <- card( full_screen = TRUE, card_header( "Average delay by category", popover( bsicons::bs_icon("gear", title = "Settings"), selectInput( "avg_delay_category", "Category", c("Carrier", "Month", "Weekday") ), radioButtons( "avg_delay_type", "Delay type", c("Arrival", "Departure"), inline = TRUE ) ), class = "d-flex justify-content-between align-items-center" ), plotlyOutput("scatter_delay") ) delay_dist <- navset_card_underline( title = "Distribution of delay times", full_screen = TRUE, id = "delay_dist_nav", sidebar = sidebar( position = "right", open = FALSE, radioButtons( "delay_dist_type", "Delay type", c("Arrival" = "arr_delay", "Departure" = "dep_delay"), inline = TRUE ), conditionalPanel( "input.delay_dist_nav === 'Overall'", selectizeInput( "delay_dist_category", "Split by", c("Choose a category" = "", "Carrier", "Month", "Weekday"), options = list(plugins = "remove_button") ) ) ), nav_panel( "Overall", plotlyOutput("delay_dist") ), nav_panel( "Over time", plotlyOutput("arr_delay_series") ) ) PRIMARY <- "#0675DD" ui <- page_navbar( theme = bs_theme( preset = "shiny", "primary" = PRIMARY ), lang = "en", title = tags$span( tags$img( src = "logo.png", width = "46px", height = "auto", class = "me-3", alt = "Shiny hex logo" ), "Chicago Flights" ), sidebar = sidebar(width = 275, sidebar_acc), nav_spacer(), nav_panel( "Delay overview", class = "bslib-page-dashboard", uiOutput("value_boxes"), layout_columns( flights_card, avg_delay_by_category ), delay_dist ), nav_panel( "Data export", card( card_header("Flight data"), DT::dataTableOutput("export") ) ), nav_item( tags$a( tags$span( bsicons::bs_icon("code-slash"), "Source code" ), href = "https://github.com/rstudio/bslib/tree/main/inst/examples-shiny/flights", target = "_blank" ) ), nav_item( input_dark_mode(id = "dark_mode", mode = "light") ) ) server <- function(input, output, session) { # --------------------------------------------------------- # Flights tab logic # # WARNING: this server-side filtering logic is VERY experimental # at this point and won't be easily adapt to different use cases. # If you feel tempted to use it, use with caution. # --------------------------------------------------------- # Mapping from input id name to updating input function input_discrete_vars <- list( origin = updateSelectInput, dest_name = updateSelectInput, carrier_name = updateSelectInput ) input_numeric_vars <- list( sched_dep_time = update_histoslider, sched_arr_time = update_histoslider, date = update_histoslider ) input_vars <- c( input_discrete_vars, input_numeric_vars ) filter_index <- function(d) { idx <- rep(TRUE, nrow(d)) for (var in names(d)) { idx <- idx & filter_col(d, var) } idx & !is.na(idx) } filter_col <- function(d, var) { vals <- d[[var]] input_val <- input[[var]] if (is.null(input_val) || identical(input_val, "")) { return(TRUE) } if (is.character(vals) || is.factor(vals) || is.logical(vals)) { return(d[[var]] %in% input_val) } # N.B. between() will remove NAs, which we probably don't # want to remove until the slider is considered 'active' rng <- range(vals, na.rm = TRUE) active <- isTRUE(rng[1] <= input_val[1] || input_val[2] <= rng[2]) if (!active) { return(TRUE) } dplyr::between(vals, input_val[1], input_val[2]) } # Set up a listener for each input that effectively says update # every other input when my value changes lapply(names(input_vars), function(var) { # We don't want updates to other variables to then # cause an update to this variable do_update <- reactiveVal(TRUE) observeEvent(input[[var]], ignoreInit = TRUE, ignoreNULL = FALSE, { if (!do_update()) return() do_update(FALSE) on.exit(do_update(TRUE), add = TRUE) d <- flights[filter_index(flights), ] if (nrow(d) == 0) return() other_vars <- setdiff(names(input_vars), var) lapply(other_vars, function(v) { input_val <- input[[v]] update_input_func <- input_vars[[v]] if (v %in% names(input_discrete_vars)) { choices <- CHOICES[[v]] %||% sort(unique(d[[v]])) selected <- input_val %||% CHOICES[[v]][CHOICES[[v]] == ""] update_input_func( inputId = v, choices = choices, selected = selected ) } else { update_input_func( id = v, values = d[[v]], start = input_val[1], end = input_val[2] ) } }) }) }) output$flight_path_reset <- renderUI({ req(c(input$origin, input$dest_name, input$carrier_name)) actionLink( "flight_path_reset", "Reset", style = htmltools::css( position = "absolute", right = "1rem", text_decoration = "none", font_weight = 700, font_size = ".875rem" ) ) }) observeEvent(input$flight_path_reset, { updateSelectInput( inputId = "origin", choices = CHOICES$origin ) updateSelectInput( inputId = "dest_name", choices = CHOICES$dest_name ) updateSelectInput( inputId = "carrier_name", choices = CHOICES$carrier_name ) }) # Flights with all filters applied (i.e., data used for value boxes/plots) flight_dat <- reactive({ flights[filter_index(flights), ] }) summary_vals <- reactive({ d <- flight_dat() list( n = scales::comma(nrow(d)), n_dest = length(unique(d$dest_name)), n_carriers = length(unique(d$carrier_name)), dep_delay = round(mean(d$dep_delay, na.rm = T), 0), dep_delay_perc = round(100 * sum(d$dep_delay > 0, na.rm = T) / nrow(d), 1), arr_delay = round(mean(d$arr_delay, na.rm = T), 0), arr_delay_perc = round(100 * sum(d$arr_delay > 0, na.rm = TRUE) / nrow(d), 1) ) }) output$value_boxes <- renderUI({ vals <- summary_vals() n_flights <- value_box( "A TOTAL OF", paste(vals$n, "flights"), paste("Across", vals$n_dest, "destinations"), tags$p(paste( "On", vals$n_carriers, "different carriers" )), showcase = bsicons::bs_icon("airplane") ) late <- if (vals$dep_delay > 0) "late" else "early" delay_dep <- value_box( "AVERAGE DEPARTURE", paste(vals$dep_delay, "mins", late), paste0(vals$dep_delay_perc, "% of flights depart ", late), showcase = bsicons::bs_icon("hourglass-split") ) late <- if (vals$arr_delay > 0) "late" else "early" delay_arr <- value_box( "AVERAGE ARRIVAL", paste(vals$arr_delay, "mins", late), paste0(vals$arr_delay_perc, "% of flights arrive ", late), showcase = bsicons::bs_icon("hourglass-bottom") ) layout_columns(class = "mb-0", n_flights, delay_dep, delay_arr) }) %>% bindCache(flight_dat()) plotly_base <- function(..., geo = FALSE, color = I(PRIMARY)) { plot_func <- if (geo) plot_geo else plot_ly plot_func(..., color = color) %>% plotly::config(displayModeBar = FALSE) %>% plotly::layout( font = list( family = "Open Sans", color = if (input$dark_mode == "dark") "white" else "#1D1F21" ), plot_bgcolor = "transparent", paper_bgcolor = "transparent" ) } output$flight_paths <- renderPlotly({ flight_dat() %>% group_by(start_lon, start_lat, end_lon, end_lat, origin, dest) %>% summarise(mean_delay = mean(arr_delay, na.rm = TRUE)) %>% plotly_base(geo = TRUE, showlegend = FALSE) %>% add_segments( x = ~start_lon, xend = ~end_lon, y = ~start_lat, yend = ~end_lat, alpha = 0.5, size = I(1), hoverinfo = "none" ) %>% add_markers( x = ~end_lon, y = ~end_lat, size = ~mean_delay, hoverinfo = "text", alpha = 0.1, text = ~paste0( origin, " -> ", dest, "
", "Average delay: ", round(mean_delay, 1) ) ) %>% layout( geo = list( bgcolor = "transparent", projection = list( type = 'orthographic', rotation = list(lon = -100, lat = 40, roll = 0) ), showland = TRUE, landcolor = toRGB("gray95"), countrycolor = toRGB("gray80") ) ) }) %>% bindCache(flight_dat(), input$dark_mode) output$scatter_delay <- renderPlotly({ d <- flight_dat() req(nrow(d) > 0) d <- switch( input$avg_delay_category, Weekday = group_by(d, y = lubridate::wday(date, label = TRUE)), Month = group_by(d, y = lubridate::month(date, label = TRUE)), Carrier = group_by(d, y = carrier_name), stop("Category of ", input$avg_delay_category, "not implemented") ) d <- switch( input$avg_delay_type, Arrival = summarise(d, avg = mean(arr_delay, na.rm = TRUE)), Departure = summarise(d, avg = mean(dep_delay, na.rm = TRUE)), ) d %>% arrange(avg) %>% mutate(y = factor(y, levels = y)) %>% plotly_base(x = ~avg, y = ~y) %>% add_bars(hoverinfo = "x") %>% layout( yaxis = list(title = ""), xaxis = list( title = paste("Average", tolower(input$avg_delay_type), "delay"), hoverformat = ".1f", gridcolor = if (input$dark_mode == "dark") "#303030" ) ) }) %>% bindCache(flight_dat(), input$dark_mode, input$avg_delay_category, input$avg_delay_type) output$delay_dist <- renderPlotly({ d <- flight_dat() x <- d[[input$delay_dist_type]] req(length(x) > 0) x_mean <- mean(x, na.rm = TRUE) end <- quantile(x, probs = 0.99, na.rm = TRUE) color <- switch( input$delay_dist_category, Carrier = d$carrier_name, Month = lubridate::month(d$date, label = TRUE), Weekday = lubridate::wday(d$date, label = TRUE), I(PRIMARY) ) plotly_base( x = x, color = color, hovertemplate = "%{y} flights were
%{x} min late " ) %>% rangeslider(start = min(x, na.rm = TRUE), end = as.numeric(end)) %>% add_annotations( text = paste( "Average", switch( input$delay_dist_type, arr_delay = "arrival", dep_delay = "departure" ), "
delay of", round(x_mean, 1), "min" ), x = x_mean, y = 0.5, yref = "paper", ax = 80, ay = -50, font = list(size = 14) ) %>% layout( barmode = "stack", yaxis = list(gridcolor = if (input$dark_mode == "dark") "#303030"), shapes = list( type = "line", x0 = x_mean, x1 = x_mean, y0 = 0, y1 = 1, yref = "paper", line = list(color = "lightgray", dash = "dash") ) ) }) %>% bindCache(flight_dat(), input$dark_mode, input$delay_dist_type, input$delay_dist_category) output$arr_delay_series <- renderPlotly({ d <- flight_dat() req(nrow(d) > 0) d <- group_by(d, date) d <- switch( input$delay_dist_type, arr_delay = summarise(d, y = mean(arr_delay, na.rm = TRUE)), dep_delay = summarise(d, y = mean(dep_delay, na.rm = TRUE)) ) color <- switch( input$delay_dist_category, Carrier = d$carrier_name, Month = lubridate::month(d$date, label = TRUE), Weekday = lubridate::wday(d$date, label = TRUE), I(PRIMARY) ) plotly_base( x = d$date, y = d$y, color = color, hovertemplate = "%{y:.1f}", ) %>% add_lines() %>% layout( hovermode = "x", xaxis = list(title = "", tickformat = "%b %e"), yaxis = list(title = "Average delay", showgrid = FALSE) ) }) %>% bindCache(flight_dat(), input$dark_mode, input$delay_dist_type, input$delay_dist_category) output$export <- DT::renderDataTable({ DT::datatable(flight_dat(), fillContainer = TRUE) }) } shinyApp(ui, server)