115 lines
3.8 KiB
R
115 lines
3.8 KiB
R
|
library(survival)
|
||
|
options(na.action=na.exclude) # preserve missings
|
||
|
options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
|
||
|
|
||
|
# Tests of the weighted Cox model
|
||
|
# This is section 1.3 of my appendix -- no yet found in any of the
|
||
|
# printings though, it awaits the next edition
|
||
|
#
|
||
|
# Efron approximation
|
||
|
#
|
||
|
aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
|
||
|
|
||
|
testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5),
|
||
|
status= c(1,0,1,1,1,0,0,1,0),
|
||
|
x= c(2,0,1,1,0,1,0,1,0),
|
||
|
wt = c(1,2,3,4,3,2,1,2,1))
|
||
|
xx <- testw1$wt
|
||
|
|
||
|
# Efron estimate
|
||
|
byhand <- function(beta, newx=0) {
|
||
|
r <- exp(beta)
|
||
|
a <- 7*r +3; b<- 4*r+2
|
||
|
loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5)/3 +
|
||
|
10*log(a*2/3 +b)/3 + 10*log(a/3 +b)/3 +2*log(2*r+1))
|
||
|
|
||
|
hazard <- c(1/(r^2 + 11*r +7),
|
||
|
10/(3*c(11*r +5, a*2/3 +b, a/3+b)), 2/(2*r+1))
|
||
|
temp <- c(hazard[1], hazard[1]+hazard[2] + hazard[3]*2/3 + hazard[4]/3,
|
||
|
cumsum(hazard)[4:5])
|
||
|
risk <- c(r^2, 1,r,r,1,r,1,r,1)
|
||
|
expected <- risk* temp[c(1,1,2,2,2,3,3,4,4)]
|
||
|
|
||
|
# The matrix of weights, one row per obs, one col per death
|
||
|
# deaths at 1,2,2,2, and 4
|
||
|
riskmat <- matrix(c(1,1,1,1,1,1,1,1,1,
|
||
|
0,0,1,1,1,1,1,1,1,
|
||
|
0,0,2/3,2/3,2/3,1,1,1,1,
|
||
|
0,0,1/3,1/3,1/3,1,1,1,1,
|
||
|
0,0,0,0,0,0,0,1,1), ncol=5)
|
||
|
wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat
|
||
|
|
||
|
x <- c(2,0,1,1,0,1,0,1,0)
|
||
|
xbar <- colSums(x*wtmat)/ colSums(wtmat)
|
||
|
imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 +
|
||
|
10* mean(xbar[2:4] - xbar[2:4]^2) + 2*(xbar[5] - xbar[5]^2)
|
||
|
|
||
|
status <- c(1,0,1,1,1,0,0,1,0)
|
||
|
wt <- c(1,2,3,4,3,2,1,2,1)
|
||
|
# Table of sums for score resids
|
||
|
hazmat <- riskmat %*% diag(c(1,10/3,10/3, 10/3,2)/colSums(wtmat))
|
||
|
dM <- -risk*hazmat #Expected part
|
||
|
dM[1,1] <- dM[1,1] +1 # deaths at time 1
|
||
|
for (i in 2:4) dM[3:5, i] <- dM[3:5,i] + 1/3
|
||
|
dM[8,5] <- dM[8,5] +1
|
||
|
mart <- rowSums(dM)
|
||
|
resid <-dM * outer(x, xbar ,'-')
|
||
|
|
||
|
# Increments to the variance of the hazard
|
||
|
var.g <- cumsum(hazard^2* c(1,3/10, 3/10, 3/10, 1/2))
|
||
|
var.d <- cumsum((xbar-newx)*hazard)
|
||
|
|
||
|
sxbar <- c(xbar[1], mean(xbar[2:4]), xbar[5]) #xbar for Schoen
|
||
|
list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar,
|
||
|
mart=status-expected, expected=expected,
|
||
|
score=rowSums(resid), schoen=c(2,1,1,0,1) - sxbar[c(1,2,2,2,3)],
|
||
|
varhaz=((var.g + var.d^2/imat)* exp(2*beta*newx))[c(1,4,5)])
|
||
|
}
|
||
|
|
||
|
# Verify
|
||
|
temp <- byhand(0,0)
|
||
|
aeq(temp$xbar, c(13/19, 11/16, 26/38, 19/28, 2/3))
|
||
|
aeq(temp$hazard, c(1/19, 5/24, 5/19, 5/14, 2/3))
|
||
|
|
||
|
fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, iter=0)
|
||
|
fit <- coxph(Surv(time, status) ~x, testw1, weights=wt)
|
||
|
|
||
|
truth0 <- byhand(0,pi)
|
||
|
aeq(fit0$loglik[1], truth0$loglik)
|
||
|
aeq(1/truth0$imat, fit0$var)
|
||
|
aeq(truth0$mart, fit0$residuals)
|
||
|
aeq(truth0$schoen, resid(fit0, 'schoen'))
|
||
|
aeq(truth0$score, resid(fit0, 'score'))
|
||
|
sfit <- survfit(fit0, list(x=pi), censor=FALSE)
|
||
|
aeq(sfit$std.err^2, truth0$varhaz)
|
||
|
aeq(-log(sfit$surv), cumsum(truth0$hazard)[c(1,4,5)])
|
||
|
|
||
|
truth <- byhand(fit$coefficients, .3)
|
||
|
aeq(truth$loglik, fit$loglik[2])
|
||
|
aeq(1/truth$imat, fit$var)
|
||
|
aeq(truth$mart, fit$residuals)
|
||
|
aeq(truth$schoen, resid(fit, 'schoen'))
|
||
|
aeq(truth$score, resid(fit, 'score'))
|
||
|
|
||
|
sfit <- survfit(fit, list(x=.3), censor=FALSE)
|
||
|
aeq(sfit$std.err^2, truth$varhaz)
|
||
|
aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coefficients*.3))[c(1,4,5)])
|
||
|
|
||
|
|
||
|
fit0
|
||
|
summary(fit)
|
||
|
resid(fit0, type='score')
|
||
|
resid(fit0, type='scho')
|
||
|
|
||
|
resid(fit, type='score')
|
||
|
resid(fit, type='scho')
|
||
|
|
||
|
rr1 <- resid(fit, type='mart')
|
||
|
rr2 <- resid(fit, type='mart', weighted=T)
|
||
|
aeq(rr2/rr1, testw1$wt)
|
||
|
|
||
|
rr1 <- resid(fit, type='score')
|
||
|
rr2 <- resid(fit, type='score', weighted=T)
|
||
|
aeq(rr2/rr1, testw1$wt)
|
||
|
|