125 lines
4.4 KiB
R
125 lines
4.4 KiB
R
|
library(survival)
|
||
|
options(na.action=na.exclude) # preserve missings
|
||
|
options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
|
||
|
|
||
|
# Tests of the weighted Cox model
|
||
|
# This is section 1.3 of my appendix -- not yet found in the book
|
||
|
# though, it awaits the next edition
|
||
|
#
|
||
|
# Similar data set to test1, but add weights,
|
||
|
# a double-death/censor tied time
|
||
|
# a censored last subject
|
||
|
# The latter two are cases covered only feebly elsewhere.
|
||
|
#
|
||
|
# The data set testw2 has the same data, but done via replication
|
||
|
#
|
||
|
aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))
|
||
|
|
||
|
testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5),
|
||
|
status= c(1,0,1,1,1,0,0,1,0),
|
||
|
x= c(2,0,1,1,0,1,0,1,0),
|
||
|
wt = c(1,2,3,4,3,2,1,2,1),
|
||
|
id = 1:9)
|
||
|
# Expanded data set
|
||
|
testw2 <- testw1[rep(1:9, testw1$wt), -4]
|
||
|
row.names(testw2) <- NULL
|
||
|
indx <- match(1:9, testw2$id)
|
||
|
|
||
|
# Breslow estimate
|
||
|
byhand <- function(beta, newx=0) {
|
||
|
r <- exp(beta)
|
||
|
loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5) +2*log(2*r+1))
|
||
|
hazard <- c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1))
|
||
|
xbar <- c((2*r^2 + 11*r)*hazard[1], 11*r/(11*r +5), r*hazard[3])
|
||
|
U <- 11- (xbar[1] + 10*xbar[2] + 2*xbar[3])
|
||
|
imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 +
|
||
|
10*(xbar[2] - xbar[2]^2) + 2*(xbar[3] - xbar[3]^2)
|
||
|
|
||
|
temp <- cumsum(hazard)
|
||
|
risk <- c(r^2, 1,r,r,1,r,1,r,1)
|
||
|
expected <- risk* temp[c(1,1,2,2,2,2,2,3,3)]
|
||
|
|
||
|
# The matrix of weights, one row per obs, one col per death
|
||
|
# deaths at 1,2,2,2, and 4
|
||
|
riskmat <- matrix(c(1,1,1,1,1,1,1,1,1,
|
||
|
0,0,1,1,1,1,1,1,1,
|
||
|
0,0,1,1,1,1,1,1,1,
|
||
|
0,0,1,1,1,1,1,1,1,
|
||
|
0,0,0,0,0,0,0,1,1), ncol=5)
|
||
|
wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat
|
||
|
|
||
|
x <- c(2,0,1,1,0,1,0,1,0)
|
||
|
status <- c(1,0,1,1,1,0,0,1,0)
|
||
|
wt <- c(1,2,3,4,3,2,1,2,1)
|
||
|
# Table of sums for score and Schoenfeld resids
|
||
|
hazmat <- riskmat %*% diag(c(1,3,4,3,2)/colSums(wtmat))
|
||
|
dM <- -risk*hazmat #Expected part
|
||
|
dM[1,1] <- dM[1,1] +1 # deaths at time 1
|
||
|
for (i in 2:4) dM[i+1, i] <- dM[i+1,i] +1
|
||
|
dM[8,5] <- dM[8,5] +1
|
||
|
mart <- rowSums(dM)
|
||
|
resid <-dM * outer(x, xbar[c(1,2,2,2,3)] ,'-')
|
||
|
|
||
|
# Increments to the variance of the hazard
|
||
|
var.g <- cumsum(hazard^2/ c(1,10,2))
|
||
|
var.d <- cumsum((xbar-newx)*hazard)
|
||
|
|
||
|
list(loglik=loglik, U=U, imat=imat, hazard=hazard, xbar=xbar,
|
||
|
mart=c(1,0,1,1,1,0,0,1,0)-expected, expected=expected,
|
||
|
score=rowSums(resid), schoen=c(2,1,1,0,1) - xbar[c(1,2,2,2,3)],
|
||
|
varhaz=(var.g + var.d^2/imat)* exp(2*beta*newx))
|
||
|
}
|
||
|
|
||
|
aeq(byhand(0)$expected, c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify
|
||
|
|
||
|
fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt,
|
||
|
method='breslow', iter=0)
|
||
|
fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0)
|
||
|
fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow')
|
||
|
fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow')
|
||
|
|
||
|
aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx])
|
||
|
aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx])
|
||
|
aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho')))
|
||
|
|
||
|
truth0 <- byhand(0,pi)
|
||
|
aeq(fit0$loglik[1], truth0$loglik)
|
||
|
aeq(1/truth0$imat, fit0$var)
|
||
|
aeq(truth0$mart, fit0$residuals)
|
||
|
aeq(truth0$schoen, resid(fit0, 'schoen'))
|
||
|
aeq(truth0$score, resid(fit0, 'score'))
|
||
|
sfit <- survfit(fit0, list(x=pi), censor=FALSE)
|
||
|
aeq(sfit$std.err^2, truth0$varhaz)
|
||
|
aeq(-log(sfit$surv), cumsum(truth0$hazard))
|
||
|
|
||
|
truth <- byhand(0.85955744, .3)
|
||
|
aeq(truth$loglik, fit$loglik[2])
|
||
|
aeq(1/truth$imat, fit$var)
|
||
|
aeq(truth$mart, fit$residuals)
|
||
|
aeq(truth$schoen, resid(fit, 'schoen'))
|
||
|
aeq(truth$score, resid(fit, 'score'))
|
||
|
|
||
|
sfit <- survfit(fit, list(x=.3), censor=FALSE)
|
||
|
aeq(sfit$std.err^2, truth$varhaz)
|
||
|
aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coefficients*.3)))
|
||
|
|
||
|
|
||
|
fit0
|
||
|
summary(fit)
|
||
|
resid(fit0, type='score')
|
||
|
resid(fit0, type='scho')
|
||
|
|
||
|
resid(fit, type='score')
|
||
|
resid(fit, type='scho')
|
||
|
aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx])
|
||
|
aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx])
|
||
|
aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho')))
|
||
|
rr1 <- resid(fit, type='mart')
|
||
|
rr2 <- resid(fit, type='mart', weighted=T)
|
||
|
aeq(rr2/rr1, testw1$wt)
|
||
|
|
||
|
rr1 <- resid(fit, type='score')
|
||
|
rr2 <- resid(fit, type='score', weighted=T)
|
||
|
aeq(rr2/rr1, testw1$wt)
|
||
|
|