114 lines
3.9 KiB
Plaintext
114 lines
3.9 KiB
Plaintext
|
|
||
|
R Under development (unstable) (2018-01-04 r74052) -- "Unsuffered Consequences"
|
||
|
Copyright (C) 2018 The R Foundation for Statistical Computing
|
||
|
Platform: x86_64-pc-linux-gnu (64-bit)
|
||
|
|
||
|
R is free software and comes with ABSOLUTELY NO WARRANTY.
|
||
|
You are welcome to redistribute it under certain conditions.
|
||
|
Type 'license()' or 'licence()' for distribution details.
|
||
|
|
||
|
R is a collaborative project with many contributors.
|
||
|
Type 'contributors()' for more information and
|
||
|
'citation()' on how to cite R or R packages in publications.
|
||
|
|
||
|
Type 'demo()' for some demos, 'help()' for on-line help, or
|
||
|
'help.start()' for an HTML browser interface to help.
|
||
|
Type 'q()' to quit R.
|
||
|
|
||
|
> options(na.action=na.exclude) # preserve missings
|
||
|
> options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type
|
||
|
> library(survival)
|
||
|
>
|
||
|
> #
|
||
|
> # The Stanford data from 1980 is used in Escobar and Meeker, Biometrics 1992.
|
||
|
> # t5 = T5 mismatch score
|
||
|
> # Their case numbers correspond to a data set sorted by age
|
||
|
> #
|
||
|
> aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...)
|
||
|
>
|
||
|
> stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5)
|
||
|
> stanford2 <- stanford2[order(stanford2$age, stanford2$time),]
|
||
|
> stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time)
|
||
|
>
|
||
|
> cage <- stanford2$age - mean(stanford2$age)
|
||
|
> fit1 <- survreg(Surv(time, status) ~ cage + I(cage^2), stanford2,
|
||
|
+ dist='lognormal')
|
||
|
> fit1
|
||
|
Call:
|
||
|
survreg(formula = Surv(time, status) ~ cage + I(cage^2), data = stanford2,
|
||
|
dist = "lognormal")
|
||
|
|
||
|
Coefficients:
|
||
|
(Intercept) cage I(cage^2)
|
||
|
6.717591081 -0.061908619 -0.003504315
|
||
|
|
||
|
Scale= 2.362872
|
||
|
|
||
|
Loglik(model)= -863.6 Loglik(intercept only)= -868.8
|
||
|
Chisq= 10.5 on 2 degrees of freedom, p= 0.00526
|
||
|
n= 184
|
||
|
> ldcase <- resid(fit1, type='ldcase')
|
||
|
> ldresp <- resid(fit1, type='ldresp')
|
||
|
> # The ldcase and ldresp should be compared to table 1 in Escobar and
|
||
|
> # Meeker, Biometrics 1992, p519; the colums they label as (1/2) A_{ii}
|
||
|
> # They give data for selected cases, entered below as mdata
|
||
|
> mdata <- cbind(c(1,2,4,5,12,16,23,61,66,72,172,182,183,184),
|
||
|
+ c(.035, .244, .141, .159, .194, .402, 0,0, .143, .403,
|
||
|
+ .178, .033, .005, .015),
|
||
|
+ c(.138, .145, .073, .076, .104, .159, 0,0, .109, .184,
|
||
|
+ .116, .063, .103, .144))
|
||
|
> dimnames(mdata) <- list(NULL, c("case#", "ldcase", "ldresp"))
|
||
|
> aeq(round(ldcase[mdata[,1]],3), mdata[,2])
|
||
|
[1] TRUE
|
||
|
> aeq(round(ldresp[mdata[,1]],3), mdata[,3])
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> plot1 <- function() {
|
||
|
+ # make their figure 1, 2, and 6
|
||
|
+ temp <- predict(fit1, type='quantile', p=c(.1, .5, .9))
|
||
|
+ plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days",
|
||
|
+ ylim=range(stanford2$time, temp))
|
||
|
+ matlines(stanford2$age, temp, lty=c(1,2,2), col=1)
|
||
|
+
|
||
|
+ n <- length(ldcase)
|
||
|
+ plot(1:n, ldcase, xlab="Case Number", ylab="(1/2) A", type='l')
|
||
|
+ title (main="Case weight pertubations")
|
||
|
+ plot(1:n, ldresp, xlab="Case Number", ylab="(1/2) A",
|
||
|
+ ylim=c(0, .2), type='l')
|
||
|
+ title(main="Response pertubations")
|
||
|
+ indx <- which(ldresp > .07)
|
||
|
+ text(indx, ldresp[indx]+ .005, indx%%10, cex=.6)
|
||
|
+ }
|
||
|
>
|
||
|
> postscript('meekerplot.ps')
|
||
|
> plot1()
|
||
|
> dev.off()
|
||
|
null device
|
||
|
1
|
||
|
> #
|
||
|
> # Stanford predictions in other ways
|
||
|
> #
|
||
|
> fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2,
|
||
|
+ dist='lognormal')
|
||
|
>
|
||
|
> p1 <- predict(fit1, type='response')
|
||
|
> p2 <- predict(fit2, type='response')
|
||
|
> aeq(p1, p2)
|
||
|
[1] TRUE
|
||
|
>
|
||
|
> p3 <- predict(fit2, type='terms', se=T)
|
||
|
> p4 <- predict(fit2, type='lp', se=T)
|
||
|
> p5 <- predict(fit1, type='lp', se=T)
|
||
|
> # aeq(p3$fit + attr(p3$fit, 'constant'), p4$fit) #R is missing the attribute
|
||
|
> aeq(p4$fit, p5$fit)
|
||
|
[1] TRUE
|
||
|
> aeq(p3$se.fit, p4$se.fit) #this one should be false
|
||
|
[1] "Mean relative difference: 0.758395"
|
||
|
> aeq(p4$se.fit, p5$se.fit) #this one true
|
||
|
[1] TRUE
|
||
|
>
|
||
|
>
|
||
|
> proc.time()
|
||
|
user system elapsed
|
||
|
0.864 0.064 0.925
|